Skip to main content

Strategic Inference in Adversarial Encounters Using Graph Matching

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1228))

Included in the following conference series:

  • 1080 Accesses

Abstract

There are many situations where we need to determine the most likely strategy that another team is following. Their strategy dictates their most likely next actions by selecting the optimal policy from their set of policies. In this scenario, there is a hierarchical, multi-agent, multi-team environment where the teams are built on layers of agents working together at each level to coordinate their behaviors, such as SiMAMT. We can think of a strategy as a hierarchically layered policy network that allows for teams to work together as a group while maintaining their own personalities. They can also shift from one policy to another as the situation dictates. SiMAMT creates an environment like this where sets of such teams can work together as allies or team up against others as adversaries. In this context, we wish to have a set of teams working as allies facing another set of teams as adversaries. One alliance should be able to analyze the actions of another alliance to determine the most likely strategy that they are following, thus predicting their next actions as well as the next best actions for the current alliance. To accomplish this, the algorithm builds graphs that represent the alignment (i.e., the constellation) of the various agent’s policies and their movement dependency diagrams (MDDs). These graphs are a clear way to represent the individual agent’s policies and their aggregation into a strategy. In this instance, the edges of the graphs represent choices that the policy can make while the vertices represent the decision junctures. This creates a map of the various agents as they move through a progression of decisions, where each decision is made at a decision juncture, and each edge shows the probabilistic progression from each of those decisions. These graphs can show the likelihood of actions taken at each level of the hierarchy, thus encoding the behaviors of the agents, their groups, the teams, and the alliances. We wish to demonstrate that these graphs can represent large sets of teams or alliances and that each alliance can use these representations to coordinate their own behavior while analyzing the behaviors of other alliances. Further, we wish to show that an alliance can make a decision in interactive time on which policy from within their strategy set should be in place based on their observations of other alliance’s strategies. To do so, the algorithm will build a probabilistic graph based on the observed actions of the other alliances by observing the actions taken by each agent within that alliance. It can then compare that probabilistic graph with known graph strategies or those that it has learned along the way. We present this methodology and verify it with experimentation confirmed in the conclusions in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das, B., Datta, S., Nimbhorkar, P.: Log-space algorithms for paths and matchings in k-trees. Theory Comput. Syst. 53(4), 669–689 (2013)

    Article  MathSciNet  Google Scholar 

  2. Datta, S., Kulkarni, R., Roy, S.: Deterministically isolating a perfect matching in bipartite planar graphs. Theory Comput. Syst. 47(3), 737–757 (2010)

    Article  MathSciNet  Google Scholar 

  3. Franklin, D.M.: Strategy inference in stochastic games using belief networks comprised of probabilistic graphical models. In: Proceedings of FLAIRS (2015)

    Google Scholar 

  4. Franklin, D.M.: Strategy inference via real-time homeomorphic and isomorphic tree matching of probabilistic graphical models. In: Proceedings of FLAIRS (2016)

    Google Scholar 

  5. Franklin, D.M., Hu, X.: SiMAMT: a framework for strategy-based multi-agent multi-team systems. Int. J. Monit. Surveill. Technol. Res. 5, 1–29 (2017)

    Google Scholar 

  6. Fukuda, K., Matsui, T.: Finding all the perfect matchings in bipartite graphs. Appl. Math. Lett. 7(1), 15–18 (1994)

    Article  MathSciNet  Google Scholar 

  7. Kumar, R., Talton, J.O., Ahmad, S., Roughgarden, T., Klemmer, S.R.: Flexible tree matching. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Three, IJCAI 2011, pp. 2674–2679. AAAI Press (2011)

    Google Scholar 

  8. Lotker, Z., Patt-Shamir, B., Pettie, S.: Improved distributed approximate matching. J. ACM 62(5), 1–17 (2015)

    Article  MathSciNet  Google Scholar 

  9. Sepp, S.: Homeomorphic Graph Images, December 2015

    Google Scholar 

  10. Vazirani, V.V.: NC algorithms for computing the number of perfect matchings in k3, 3-free graphs and related problems. Inf. Comput. 80(2), 152–164 (1989)

    Article  Google Scholar 

  11. Wang, T., Yang, H., Lang, C., Feng, S.: An error-tolerant approximate matching algorithm for labeled combinatorial maps. Neurocomputing 156, 211 (2015)

    Article  Google Scholar 

  12. Windsor, A.: BOOST Library: Planar Graphs, December 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Michael Franklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franklin, D.M. (2020). Strategic Inference in Adversarial Encounters Using Graph Matching. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing, vol 1228. Springer, Cham. https://doi.org/10.1007/978-3-030-52249-0_17

Download citation

Publish with us

Policies and ethics