Skip to main content

Continental Lithosphere

  • Chapter
  • First Online:
The Lithosphere Beneath the Indian Shield

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 20))

  • 475 Accesses

Abstract

The chapter offers a concise introduction to the constitution of the lithosphere. In the course of this discussion, the conceptual subdivisions of the lithosphere and their characteristic features are elucidated.

The seismic structure and characteristics of the two main crustal types and their tectonic settings are highlighted. The significance of the more important Moho types and their interrelationship in deep continental studies is underscored.

The subcontinental lithospheric mantle (SCLM) is the non-convective part of the upper mantle. The mineralogical and chemical composition of the SCLM is described and its role in the evolution of the crust and the subjacent mantle is summarised.

The later part of the chapter unfolds the salient features of the methods and techniques employed to study the lithosphere. While the efficacy of the various geophysical methods, employed to study the characteristics of the deep crust and mantle, is highlighted, the limitations are also brought out into discussion. Likewise, the characteristics of the different types of seismic waves, their velocity variations, the factors that influence their propagation and which have a bearing on the interpretation of the characteristics of the deep lithologies are outlined. In addition, the chapter includes the salient features of the electrical and magnetotelluric methods used to study the deep interior. Finally the surface heat flow and heat production measurements, and their advantages and limitations are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal BNP, Thakur NK, Negi JG (1992) Magsat data and Curie depth below Deccan Flood Basalt (India). Pageoph 138:678–691

    Google Scholar 

  • Alaard O, Griffin WL, Lorand JP, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407:891–894

    Google Scholar 

  • Ammon CJ, Randall GE, Zandt G (1990) On the non-uniqueness of receiver function inversions. J Geophys Res 95:15303–15318

    Google Scholar 

  • Anderson DL (1995) Lithosphere, asthenosphere, and perisphere. Rev Geophys 33:125–149

    Google Scholar 

  • Artemieva IM (1996) The dependence of transport properties of in situ rocks on pore fluid composition and temperature. Surv Geophys 17:289–306

    Google Scholar 

  • Artemieva IM (2011) The lithosphere. Cambridge University Press, Cambridge, p 773

    Google Scholar 

  • Atchuta Rao D, Ram Bau HV, Sivakumar Sinha GDJ (1992) Crustal structure associated with Gondwana graben across the Narmada-Son lineament in India: an inference from aeromagnetics. Tectonophysics 212:163–172

    Google Scholar 

  • Barrel J (1914) The strength of the Earth’s crust. J Geol 22:28–48

    Google Scholar 

  • Barruol G, Kern H (1996) Seismic anisotropy and the shear-wave splitting in lower crustal and upper mantle rocks from the Ivrea zone- an experimental and calculated data. Phys Earth Planet Inter 95:175–194

    Google Scholar 

  • Barton G (1986) The relationship between seismic velocity and density in the continental crust- a useful constraint? Geophys J R Astron Soc 87:195–208

    Google Scholar 

  • Bass JD, Anderson DL (1984) Composition of the upper mantle: geophysical test of two petrological models. Geophys Res Lett 11:229–232

    Google Scholar 

  • Bell DR, Rossman GR (1992) Water in the earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391–1397

    Google Scholar 

  • Berckhemer H, Kapfmann W, Aulbach E, Schmeling H (1982) Shear modulis and Q of forsterite and dunite near partial melting from forced oscillation experiments. Phys Earth Planet Inter 29:30–41

    Google Scholar 

  • Bodine JH, Steckler MS, Watts AB (1981) Observation of flexture and the rheology of the oceanic lithosphere. J Geophys Res 86:3695–3707

    Google Scholar 

  • Bott MHP (1982) The mechanism of continental splitting. Tectonophysics 81:301–309

    Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00–4.03) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134:3–16

    Google Scholar 

  • Boyd FR (1973) A pyroxene geotherm. Geochim Cosmochim Acta 37:2533–2546

    Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    Google Scholar 

  • Brey GP, Kohler T (1990) Geothermobarometry in four phase lherzolite II: new thermobarometers and practical assessment of existing thermobarometers. J Petrol 27:1353–1358

    Google Scholar 

  • Chapman DS, Furlong KP (1992) Thermal state of the continental lower crust. In: Fountain DM, Arculus RJ, Kay RW (eds) The continental crust. Elsevier, Amsterdam, pp 129–199

    Google Scholar 

  • Christensen I (1965) Compressional wave velocities in metamorphic rocks at pressures to 10 kbars. J Geophys Res 70:6147–6164

    Google Scholar 

  • Christensen I, Fountain DM (1975) Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite. Geol Soc Am Bull 86:227–236

    Google Scholar 

  • Christensen I, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788

    Google Scholar 

  • Clitheroe G, Gudmundsson O, Kennett BLN (2000) The crustal thickness of Australia. J Geophys Res 105:13697–13713

    Google Scholar 

  • Condie KC (1997) Plate tectonics and crustal evolution. Butterworth Heinemann, Oxford, p 282

    Google Scholar 

  • Constable S, Shankland TJ, Duba A (1992) The electrical conductivity of an isotropic olivine mantle. J Geophys Res 97:3397–3404

    Google Scholar 

  • Cooper CM, Lenardic A, Moresi L (2004) The thermal structure of stable continental lithosphere within a dynamic mantle. Earth Panet Sci Lett 222:807–817

    Google Scholar 

  • Crampin S (1977) A review of the effects of anisotropy layering on the propagation of seismic waves. Geophys J R Astron Soc 45:9–27

    Google Scholar 

  • Crampin S (1987) Geological and industrial implications of extensive-dilatancy anisotropy. Nature 328:491–496

    Google Scholar 

  • Dahl-Jensen T, Larsen TB, Woelbern I, Bach T (2003) Depth to Moho in Greenland: receiver function analysis suggests two Proterozoic blocks in Greenland. Earth Planet Sci Lett 205:379–393

    Google Scholar 

  • Davis GF (1980) Review of oceanic and global heat flow estimates. Rev Geophys Space Phys 18:718–722

    Article  Google Scholar 

  • Dessai AG (1985) Ultramafic xenoliths(?) in lamprophyre dykes from Murud-Janjira, Raigarh district. Maharashtra Curr Sci 54:1235–1238

    Google Scholar 

  • Dessai AG (1987) Geochemistry and petrology of xenolith bearing alkaline lamprophyres from Murud-Janjira, Raigad district. Maharashtra J Geol Soc Ind 30:61–71

    Google Scholar 

  • Dessai AG, Vaselli O (1999) Petrology and geochemistry of xenoliths in lamprophyres from the Deccan Traps: implications for the nature of the deep crust boundary in western India. Min Mag 63:703–722

    Article  Google Scholar 

  • Dessai AG, Knight K, Vaselli O (1999) Thermal structure of the lithosphere beneath the Deccan Traps along the western continental margin: evidence from xenoliths data. J Geol Soc India 54:585–598

    Google Scholar 

  • Dessai AG, Markwick A, Vaselli O, Downes H (2004) Granulite and pyroxenite xenoliths from the Deccan trap: insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos 78:263–290

    Article  Google Scholar 

  • Dessai AG, Peinado M, Gokarn SG, Downes H (2009) Structure of the deep crust beneath the central Indian tectonic zone: an integration of geophysical and xenolith data. Gondwana Res 17:162–170

    Article  Google Scholar 

  • Du Frane WL, Roberts JJ, Toffelmier DA, Tyburczy JA (2005) Anisotropy of electrical conductivity in dry olivine. J Geophys Res 32:L24315. https://doi.org/10.1029/2005GL023879

    Article  Google Scholar 

  • Durrheim RJ, Mooney WD (1991) Archaean and proterozoic crustal evolution: evidence from crustal seismology. Geology 19:606–609

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibrium. Contrib Mineral Petrol 71:13–22

    Google Scholar 

  • Faul UH, Jackson I (2005) The seismological signature of temperature and grain size variation in the upper mantle. Earth Planet Sci Lett 234:119–134

    Google Scholar 

  • Finlayson DM, Prodehl C, Collins CDN (1979) Explosion seismic profiles and implications for crustal evolution in southeastern Australia. Bur Miner Res J Aust Geol Geophys 4:243–252

    Google Scholar 

  • Finnerty AA, Boyd FR (1984) Evaluation of thermobarometers for garnet peridotites. Geochim Cosmochim Acta 48:15–27

    Google Scholar 

  • Frazer D, Lawless P (1978) Palaeogeotherms: implications of disequilibrium in garnet lherzolite xenoliths. Nature 273:220–222

    Google Scholar 

  • Ganguly J, Battacharya PK (1987) Xenoliths in Proterozoic kimberlites from southern India: petrology and geophysical implications. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 249–265

    Google Scholar 

  • Garnero EJ, Revenaugh J, Williams Q, Lay T (1998) Ultralow velocity zone at the core-mantle boundary. Geodynamics 28:319–334

    Article  Google Scholar 

  • Goetze C, Kolstedt DL (1973) Laboratory study of the dislocation climb and diffusion in olivine. J Geophys Rev 18:1–75

    Google Scholar 

  • Grad M, Bruckl CE, Majdanski M, Behm M (2009) Crustal structure of the eastern Alps and their foreland: seismic model beneath the CEL10/Alp04 profile and the tectonic implications. Geophys J Int 177:321–333

    Article  Google Scholar 

  • Gribb TT, Cooper RF (1998) Low-frequency shear attenuation in polycrystalline olivine: grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology. J Geophys Res 103:27267–27279

    Article  Google Scholar 

  • Griffin WL, Wass SY, Hollis JD (1984) Ultramafic xenoliths from Bullenmerri and Gnotuk Maars, Victoria, Australia: petrology of a subcontinental crust–mantle transition. J Petrol 25:53–87

    Google Scholar 

  • Gupta S, Rai SS, Prakasam KS, Srinaguesh D, Chadda RK (2003) The nature of the crust in southern India: implications for Precambrian crustal evolution. Geophys Res Lett 30(8):1419. https://doi.org/10.1029/2002GL016770

    Article  Google Scholar 

  • Gutenberg B (1954) Seismicity of the earth and associated phenomena. Hafner, New York, p 310

    Google Scholar 

  • Haak V, Hutton VRS (1986) Electrical resistivity in the continental lower crust. In: Dawson JB, Carswell DA, Hall J, Wedepohl KH (eds) The nature of the lower continental crust, Geological Society, London, Special Publications, vol 24, pp 35–49

    Google Scholar 

  • Hanson GN (1980) Rare earth elements in petrogenetic studies of igneous systems. Annu Rev Earth Planet Sci 8:371–406

    Google Scholar 

  • Harley SL (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373

    Google Scholar 

  • Harley SL (1989) The origin of granulites: a metamorphic perspective. Geol Mag 126:215–247

    Google Scholar 

  • Harley SL, Green DH (1982) Garnet-orthopyroxene barometry for granulites and peridotites. Nature 300:697–701

    Google Scholar 

  • Harte B, Freer R (1982) Diffusion data and their bearing on the interpretation of mantle nodules and the evolution of mantle lithosphere. Terra Cognita 2:273–275

    Google Scholar 

  • Harte B, Jackson PM, McIntyre RM (1981) Age of mineral equilibria in granulite facies nodules from kimberlites. Nature 281:147–155

    Google Scholar 

  • Hatton C, Gurney J (1987) Robert victor eclogites and their relation to mantle. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 453–464

    Google Scholar 

  • Hirsch LM, Shankland TJ (1993) Electrical conduction and polaron mobility in Fe-bearing olivine. Geophys J Int 114:36–44

    Google Scholar 

  • Hirth G, Evans RL, Chave AD (2000) Comparison of continental and oceanic mantle electrical conductivity: is Archean lithosphere dry? Eochem Geophys Geosyst 1. https://doi.org/10.1029/2000GC000048

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Google Scholar 

  • Ito K, Kennedy GC (1967) Melting and phase relations in a natural peridotite to 40 kilobars. Am J Sci 265:519–538

    Google Scholar 

  • Ito E, Harris DM, Anderson AT (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47:1613–1624

    Google Scholar 

  • Iyer HM, Hirahara K (eds) (1993) Seismic tomography: theory and practice. Chapman and Hall, London, p 842

    Google Scholar 

  • Jackson I (1993) Progress in the experimental study of seismic wave attenuation. Annu Rev Earth Planet Sci 21:375–406

    Google Scholar 

  • Jaupart C, Mann JR, Simmons G (1982) A detailed study of the distribution of heat flow and radioactivity in New Hampshire (USA). Earth Planet Sci Lett 59:267–287

    Google Scholar 

  • Jones AG (1992) Electrical properties of the lower continental crust. In: Fountain DM, Arculus R, Kay RW (eds) Continental lower crust. Elsevier, The Netherlands, pp 81–144

    Google Scholar 

  • Jones AG (1999) Imaging the continental upper mantle using electromagnetic methods. Lithos 48:57–80

    Google Scholar 

  • Jordan TH (1975) The continental tectosphere. Rev Geophys Space Phys 13:1–12

    Google Scholar 

  • Kaila KL (1988) Mapping the thickness of Deccan Trap flows in India from DSS studies and inferences about a hidden Mesozoic basin in the Narmada–Tapti region. In: Subbarao KV (ed) Deccan flood basalts, Geological Society of India Memoirs, vol 10, pp 91–116

    Google Scholar 

  • Karato S-I (1986) Does partial melting reduce the creep strength of the upper mantle. Nature 319:309–310

    Google Scholar 

  • Karato S-I (1992) On the Lehmann discontinuity. Geophys Res Lett 19:2255–2258

    Google Scholar 

  • Katayama I, Jung H, Karato S (2004) New type of olivine fabric at modest water content and low stress. Geology 32:1045–1048

    Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406

    Google Scholar 

  • Kennett BLN (2006) On seismological reference models and the perceived nature of the heterogeneity. Phys Earth Planet Inter 159:129–139

    Google Scholar 

  • Kern H (1978) The effect of high temperature and high confining pressure on compositional wave velocities in quartz-bearing and quartz-free igneous and metamorphic rocks. Tectonophysics 44:185–203

    Google Scholar 

  • Kern H (1993) P-wave and S-wave anisotropy and shear-wave splitting at pressure and temperature in possible mantle rocks and their relation to the rock fabric. Phys Earth Planet Inter 78:245–256

    Google Scholar 

  • Kind R, Yuan X, Saul J, Nelson D (2002) Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasia plate subduction. Science 288:1219–1221

    Google Scholar 

  • Knittle CE, Jeanloz R (1991) Earth’s core-mantle boundary results of experiments at high pressure and temperature. Science 251:1438–1443

    Google Scholar 

  • Kumar P, Yuan X, Kind R, Kosarev G (2005) The lithosphere-asthenosphere boundary in the Tien Shan-Karakoram region from S receiver function: evidence for continental subduction. Geophys Res Lett 32:L07305

    Google Scholar 

  • Kumar P, Yuan S, Ravi Kumar M, Kind R, Li CX, Chadha K (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897

    Google Scholar 

  • Kushiro I, Syono Y, Akimoto S (1968) Melting of a peridotite nodule at high pressure and high water pressures. J Geophys Res 73:6023–6029

    Google Scholar 

  • Kuskov OL, Kronrod VA, Annersten H (2006) Inferring upper mantle temperatures from seismic and geochemical constraints: implications for Kaapvaal craton. Earth Planet Sci Lett 244:133–154

    Google Scholar 

  • Lee CTA (2003) Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. J Geophys Res 108(B(9)):2441. https://doi.org/10.1029/2003JB002413

    Article  Google Scholar 

  • Lehmann I (1961) S waves and the structure of the upper mantle. Geophys J R Astron Soc 4:124–138

    Google Scholar 

  • Lehmann I (1962) The travel time of longitudinal waves of the Logan and Blanca atomic explosions and their velocities in the upper mantle. Bull Seismol Soc Am 52:519–526

    Google Scholar 

  • Lindsley DH, Grover JE, Davidson PM (1981) The thermodynamics of the Mg2Si 2O 6-CaMgSi26 join: a review and new model. In: Newton RC, Navrotsky A, Wood BJ (eds) Thermodynamics of minerals and melts, Advances in Physical Chemistry. Springer-Verlag, New York, pp 149–175

    Google Scholar 

  • Matsukage KN, Nishihara Y, Karato S-I (2005) Seismological signature of chemical differentiation of the earth’s upper mantle. J Geophys Res 110:B12305. https://doi.org/10.1029/2004JB003504

    Article  Google Scholar 

  • Mayhew MA, Johnson BD (1987) An equivalent layer magnetisation model for Australia based on Magsat data. Earth Planet Sci Lett 83:167–174

    Google Scholar 

  • McCulloch MT, Arculus RJ, Chapell KW, Ferguson J (1982) Lower continental crust: inferences from isotopic and geochemical studies of nodules in kimberlites. Nature 300:166–169

    Google Scholar 

  • McKenzie D, Jackson J, Priestly K (2005) Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett 23:337–349

    Google Scholar 

  • Meissner R, Strehlau J (1982) Limits of stress in the continental crust and their relation to depth frequency distributions of shallow earthquakes. Tectonics 1:73–89

    Google Scholar 

  • Meissner R, Weaver T (1989) Continental crustal structure. In: James ED (ed) The encyclopaedia of solid earth geophysics. Van Nostrand Reinhold, New York, pp 79–89

    Google Scholar 

  • Misra DC, Ravi Kumar M (2008) Geodynamics of Indian plate and Tibet: buoyant lithosphere, rapid drift and channel flow from gravity studies. Geol Soc Ind Mem 68:151–172

    Google Scholar 

  • Montagner J-P, Guillot L (2002) Seismic anisotropy and global geodynamics. In: Karato S, Wenk H-R (eds) Plastic deformations of minerals and rocks. MSA, Washington, DC, pp 353–385

    Google Scholar 

  • Montagner J-P, Tanimoto T (1990) Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. J Geophys Res 95:4797–4819

    Google Scholar 

  • Mooney WD, Brocher TM (1987) Coincident seismic reflection/refraction studies of the continental lithosphere: a global review. Rev Geophys 25:723–742

    Google Scholar 

  • Mooney WD, Meissner R (1992) Multi-genetic origin of crustal reflectivity: a review of seismic reflection profiling of the continental lower crust and Moho. In: Fountain DM, Arculus R, Kay RW (eds) Continental lower crust. Elsevier, Amsterdam, pp 45–79

    Google Scholar 

  • Mukherjee AB, Biswas S (1988) Mantle-derived spinel lherzolite xenoliths from the Deccan Volcanic Province (India): implications for the thermal structure of the lithosphere underlying the Deccan traps. J Volcanol Geotherm Res 35:269–276

    Google Scholar 

  • Murase T, Kushiro I, Fuji T (1977) Compressional wave velocity in partially molten peridotite. Annual Report of the Director Geophysical Laboratory, Carnegie Inst., Washington, DC, pp 414–416

    Google Scholar 

  • Nehru CE, Reddy AK (1989) Ultramafic xenoliths from Wajrakarur kimberlite, India. In: Ross J et al (eds) Kimberlites and related rocks, Special Publications, Geological Society, Australia, vol 14, pp 745–759

    Google Scholar 

  • Nguuri TK, Gore G, James DE, Webb SJ, Wright C (2001) Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons. Geophys Res Lett 28:2501–2504

    Google Scholar 

  • Nicolas A, Christensen NI (1987) Formation of anisotropy in the upper mantle peridotites- a review. In: Fuchs K, Froidevaux C (eds) Composition, structure and dynamics of lithosphere-asthenosphere systems, AGU Geodynamic Series, vol 16. Wiley, New York, pp 111–123

    Google Scholar 

  • Nixon PH, Boyd FR (1973) Petrogenesis of the granular and sheared ultrabasic nodule suite in kimberlites. In: Nixon PH (ed) Lesotho Kimberlites. Lesotho National Development Corporation, Lesotho, pp 48–56

    Google Scholar 

  • Nolasco R, Tarits P, Filloux JH, Chave AD (1998) Magnetotelluric imaging of the Society Island hotspot. J Geophys Res 103(B12):30287–30309

    Google Scholar 

  • Nolet G (1987) Seismic tomography. Reidel, Dordrecht, The Netherlands, p 386

    Google Scholar 

  • Nolet G (2008) A Breviary of seismic tomography: imaging the interior of the Earth and Sun. Cambridge University Press, Cambridge, pp 339–344

    Google Scholar 

  • Nur A (1971) Effect of stress on velocity anisotropy in rocks with cracks. J Geophys Res 76:2022–2034

    Google Scholar 

  • O’Neill HSC, Wood BJ (1979) An empirical study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib Mineral Petrol 70:59–70

    Google Scholar 

  • Oreshin S, Vinnik L, Peregoudov D, Roecker S (2002) Lithosphere and asthenosphere of the Tien Shan imaged by S receiver functions. Geophys Res Lett 29:1191. https://doi.org/10.1029/2001GL014441

    Article  Google Scholar 

  • Pollock CH, Chapman DH (1977) On the regional variation of heat flow, geotherms and the thickness of the lithosphere. Tectonophysics 38:279–296

    Google Scholar 

  • Qureshy MN (1970) Relation of gravity to elevation, geology and tectonics in India. Proc. 2nd Symp. on Upper Mantle Project, NGRI, 1–20

    Google Scholar 

  • Raval UL (2003) Interaction of mantle plume with Indian continental lithosphere since the cretaceous. Geol Soc Ind Mem 53:449–479

    Google Scholar 

  • Reddi AGB, Mathew MP, Singh B, Naidu PS (1988) Aeromagnetic evidence of crustal structure in the granulite terrain of Tamil Nadu-Kerala. J Geol Soc India 32:368–381

    Google Scholar 

  • Ringwood AE (1962) A model for the upper mantle. Geophys Res Lett 67:857–867

    Google Scholar 

  • Rogers NW, Hawkesworth CJ (1982) Proterozoic age and cumulate origin of granulite xenoliths, Lesotho. Nature 299:409–413

    Google Scholar 

  • Rudnick RL, McDonough WF, O’Connel RJ (1998) Thermal structure, thickness and composition of continental lithosphere. Chem Geol 145:395–411

    Google Scholar 

  • Santos FAM, Soares A, Nolasco R, Rodrigues H, Luzio R, Palshin N (2003) Lithosphere conductivity structure using the CAM-1 (Lisbon-Madeira) submarine cable. Geophys J Int 155:591–600

    Google Scholar 

  • Sass JH, Lachenbruch AH (1979) Thermal regime of the Australian continental crust. In: McElhinny MW (ed) The earth its origin, structure and evolution. Academic Press, London, pp 311–352

    Google Scholar 

  • Sclater JG, Jaupart C, Galson D (1980) The heat flow through oceanic and continental crust and the heat loss of the earth. Rev Geophys Space Phys 18:269–311

    Google Scholar 

  • Shearer PM (1999) Introduction to seismology. Cambridge University Press, Cambridge, p 260

    Google Scholar 

  • Singh BP, Rajaraman M (1990) Magsat studies over the Indian region. Proc Indian Acad Sci (Earth Planet Sci) 99:619–637

    Google Scholar 

  • Sumino Y, Anderson OL (1982) Elastic constants in minerals. In: Carmichel RS (ed) CRC handbook of physical properties of rocks. CRC Press, Boca Raton, FL, pp 29–138

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Ufen RJ (1952) A method of estimating the melting-point gradient in the earth’s mantle. Trans Am Geophys Union 33:893–896

    Google Scholar 

  • Verma RK (1985) Gravity field, seismicity and tectonics of the Indian peninsula and the Himalaya. Allied Publ. Pvt. Ltd., New Delhi, p 203

    Google Scholar 

  • Walter MJ (1999) Melting residue of fertile peridotite and the origin of cratonic lithosphere. In: Fei Y, Bertka C, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation, vol 6. Geochemical society, Houston, TX, pp 225–239

    Google Scholar 

  • Wasilewski PJ, Thomas HH, Mayhew MA (1979) The Moho as a magnetic boundary. Geophys Res Lett 6:541–544

    Google Scholar 

  • Wass SY, Hollis JD (1983) Crustal growth in southern Australia—evidence from lower crustal eclogitic and granulitic xenoliths. J Met Petrol 1:25–45

    Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Google Scholar 

  • White RS, McKenzie D, O’Nions RK (1992) Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res 97:19683–19715

    Google Scholar 

  • Windley BF (1995) The evolving continents, vol 489. Wiley, Chichester, New York, Brisbane, Toronto-Singapore

    Google Scholar 

  • Wittlinger G, Vergne J, Tapponnier P et al (2004) Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth Planet Sci Lett 221:117–130

    Google Scholar 

  • Wood BJ (1974) Solubility of alumina in orthopyroxene coexisting with garnet. Contrib Mineral Petrol 46:1–15

    Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–121

    Google Scholar 

  • Wyllie PJ (1995) Experimental petrology of upper mantle materials, process and products. J Geodyn 20:429–468

    Google Scholar 

  • Xu YS, Shankland TJ, Duba AG (2000) Pressure effect on electrical conductivity of the earth’s mantle. J Geophys Res 105:27865–27875

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dessai, A.G. (2021). Continental Lithosphere. In: The Lithosphere Beneath the Indian Shield. Modern Approaches in Solid Earth Sciences, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-52942-0_1

Download citation

Publish with us

Policies and ethics