Skip to main content

Indian Shield

  • Chapter
  • First Online:
The Lithosphere Beneath the Indian Shield

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 20))

  • 399 Accesses

Abstract

The Indian shield is divisible into two blocks along the major ENE-WSW trending Central Indian Tectonic Zone (CITZ) which separates the Aravalli and Bundelkhand cratons to the north from the Singhbhum, Bastar, Western- and Eastern-Dharwar cratons to the south. The Aravalli Craton consists of 3.3–2.5 Ga gneisses, migmatites, metasediments, and amphibolites which make up the Banded Gneissic Complex. This cratonic block was stabilised by about 2.5 Ga. The Bundelkhand Craton to the east of Aravalli block was stabilised around 1.8 Ga. It consists of gneiss-greenstone enclaves within granitic plutons and associated quartz reefs and mafic dyke swarms, intruded by the Bundelkhand granite.

The Singhbhum Craton to the south of CITZ consists of a core of 3.5 Ga TTG gneisses intruded by three pulses (3.4, 3.3, and 3.1 Ga) of Singhbhum granite and its equivalents. The granite contains enclaves of Older Metamorphic Group and Older Metamorphic Tonalite Gneisses. The granite is fringed by Proterozoic BIF basins. The craton was stabilised between 2.5 and 3.0 Ga.

The Bastar Craton comprises 2.6–2.2 Ga granite which contains vestiges of 3.5–3.0 Ga TTG gneisses. The supracrustals consist of conglomerates with BIF and subordinate basic and ultrabasic rocks as enclaves within granites.

The EDC consists of a remobilised basement of 2.7–2.5 Ga granodioritic gneisses and granitoids which also corresponds to the stabilisation of the craton. The supracrustals consist of high-Mg, low-K mafic volcanics of tholeiitic affinity with tuffs, and minor BIF which lack true conglomerates and sedimentary intercalations. The WDC comprises 3.3–3.1 Ga TTG gneisses intruded by the Closepet Granite at 2.51 Ga. The supracrustal rocks consist of two sequences assigned to the Sargur Group (~3.3–3.1 Ga) and the greenstones of the Dharwar Supergroup (2.9–2.4 Ga). The craton was stabilised around 3.3–3.0 Ga. The WDC and the EDC are brought in contact with the Southern Granulite Terrain, primarily along the Palghat-Cauvery shear zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal BNP, Thakur NK, Negi JG (1992) Magsat data and Curie depth below Deccan Flood Basalt (India). Pageoph 138:678–691

    Google Scholar 

  • Agrawal PK, Pandey OP (2004) Unusual lithospheric structure and evolutionary pattern of the cratonic segment of the south Indian shield. Earth Planets Space 56:139–150

    Google Scholar 

  • Auden JB (1949) Dykes in Western India. A discussion of their relationship with Deccan Traps. Trans Nat Inst Sci India 3:123–137

    Google Scholar 

  • Battacharya SN (1974) The crust mantle structure of the Indian peninsula from surface wave dispersion. Geophys J R Astron Soc 36:273–283

    Google Scholar 

  • Bhaskar Rao YJ, Chetty TRK, Janardhan AS, Gopalan K (1996) Sm-Nd and Rb-Sr ages and P-T history of the Archaean Sittampundi and Bhavani layered meta-anorthosite complexes in the Cauvery shear zone, South India. Contrib Mineral Petrol 125:237–250

    Google Scholar 

  • Bodin T, Yuhan H, Romanowicz B (2013) Inversion of receiver functions applied to Indian craton. Geophys J Int 196:1025–1033

    Google Scholar 

  • Bose MK (1980) Alkaline volcanism in the Deccan volcanic province. J Geol Soc India 21:317–329

    Google Scholar 

  • Bose S, Gupta S (2018) Strain partitioning along the Mahanadi shear zone: implications for the palaeo-tectonics of the Eastern Ghats Province, India. J Asian Earth Sci 157:269–282

    Google Scholar 

  • Burke K, Dewey JF (1973) Plume generated triple junctions: Key indicators in applying plate tectonics to old rocks. J Geol 81:406–433

    Google Scholar 

  • Chadwick B, Ramakrishnan M, Vasudev VN, Viswanath MN (1989) Facies distribution and the structure of the Dharwar volcano-sedimentary basin: evidence for late Archaean transpression in southern India? J Geol Soc Lond 146:825–834

    Google Scholar 

  • Chadwick B, Vasudev MN, Krishna Rao B, Hegde GV (1992) The Dharwar Supergroup: basin development and implications for late tectonic setting in western Karnataka, southern India. In: Glover JE, Ho SE (eds) The Archaean terrains, processes and metallogeny, vol 22. University of Western Australia Publication, Western Australia, pp 3–15

    Google Scholar 

  • Chadwick B, Vasudev VN, Ahmed N (1996) The Sandur schist belt and its adjacent plutonic rocks: implications for late Archaean crustal evolution in Karnataka. J Geol Soc India 47:37–57

    Google Scholar 

  • Chadwick B, Vasudev MN, Hegde GV (2000) Dharwar craton southern India, interpreted as the result of late Archaean oblique convergence. Precambrian Res 99:91–111

    Google Scholar 

  • Chalapathi R, Dongre AN, Wu FY, Lehmann B (2016) A late Cretaceous (ca. 90 Ma) kimberlite event in southern India: implications for sub-continental lithospheric mantle evolution and diamond exploration. Gondwana Res 35:378. https://doi.org/10.1016/j.gr.2015.06.006

    Article  Google Scholar 

  • Chatterjee A, Das K, Bose S, Ganguly P, Hidaka H (2017) Zircon U-Pb SHRIMP and monazite EPMA U-Th-total Pb geochronology of granulites of the western boundary, Eastern Ghat Belt, India: a new possibility for Neoproterozoic exhumation history. In: Pant NC, Dasgupta S (eds) Crustal evolution of India and Antarctica: the Supercontinent connection, vol 457. Geological Society London, Special Publication, London, pp 1–6

    Google Scholar 

  • Chekunov AV, Sollugub VB, Starostenko VI, Kharetchiko GE, Rusakov VG, Kosttukovich AS (1984) Structure of the earth’s crust and upper mantle below Hindustan and the northern part of the Indian Ocean from geophysical data. Tectonophysics 101:63–73

    Google Scholar 

  • Clemens JD (2006) Melting of continental crust: fluid regimes, melting reactions, and source-rock fertility. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 296–330

    Google Scholar 

  • Closs H, Hinz K (1967) Refraction seismic measurements in the northern Arabian Sea. Paper presented at the symposium on Upper Mantle Project, Hyderabad, India, Jan 4–8, 1967 (quoted by Mahadevan, 1994)

    Google Scholar 

  • Courtillot VE, Feraud G, Maluski H, Vandamne D, Moreau MG, Besse J (1988) Deccan flood basalts and the cretaceous-tertiary boundary. Nature 333:843–846

    Google Scholar 

  • Das E, Karmarkar S, Dey A, Karmarkar S, Sengupta P (2017) Reaction textures, pressure temperature paths and chemical dates of monazites from a new suite of saphirine—spinel granulites from parts of Eastern Ghat Province, India: insights into the final amalgamation of India and east Antarctica during the formation of Rodinia. In: Pant NC, Dasgupta S (eds) Crustal evolution of India and Antarctica: the supercontinent connection, vol 457. Geological Society London, Special Publication, London, pp 1–6

    Google Scholar 

  • Deshmukh SS, Sehgal MN (1988) Mafic dyke-swarm in Deccan volcanic province of Madhya Pradesh and Maharashtra. In: Subbarao KV (ed) Deccan flood basalts, vol 10. Geological Society of India, Memoirs, Bangalore, pp 323–340

    Google Scholar 

  • Dessai AG, Deshpande GG (1979) Komatiites from Sanguem area, Goa. India Neues Jahrbuch Miner Abh 135:209–220

    Google Scholar 

  • Dessai AG, Vaselli O (1999) Petrology and geochemistry of xenoliths in lamprophyres from the Deccan Traps: implications for the nature of the deep crust boundary in western India. Min Mag 63:703–722

    Google Scholar 

  • Dessai AG, Viegas AAAA (1995) Multigeneration mafic dyke swarm related to Deccan magmatism, south of Bombay: Implications on the evolution of the western continental margin. In: Devaraju TC (ed) Dyke swarms of peninsular India, vol 33. Geological Society of India, Memoirs, Bangalore, pp 435–451

    Google Scholar 

  • Dessai AG, Knight K, Vaselli O (1999) Thermal structure of the lithosphere beneath the Deccan Traps along the western continental margin: evidence from xenoliths data. J Geol Soc India 54:585–598

    Google Scholar 

  • Dessai AG, Markwick A, Vaselli O, Downes H (2004) Granulite and Pyroxenite xenoliths from the Deccan Trap: Insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos 78:263–290

    Google Scholar 

  • Dessai AG, Peinado M, Gokarn SG, Downes H (2009) Structure of the deep crust beneath the central Indian tectonic zone: An integration of geophysical and xenolith data. Gondwana Res 17:162–170

    Google Scholar 

  • Drury SA, Holt RW (1980) The tectonic framework of the south Indian craton: a reconnaissance involving LANDSAT imagery. Tectonophysics 65:1–6

    Google Scholar 

  • Duncan RA, Pyle DG (1988) Rapid eruption of Deccan flood basalts, western India. In: Subbarao KV (ed) Deccan flood basalts, vol 10. Geological Society of India, Memoirs, Bangalore, pp 1–9

    Google Scholar 

  • Fermor LL (1930) On the age of the Aravallis. Rec Geol Surv Ind 62:391–409

    Google Scholar 

  • Fermor LL (1936) An attempt at correlation of ancient schists of peninsular India. Geol Surv Ind Mem 70:1–218

    Google Scholar 

  • Francis TJG, Shor G Jr (1966) Seismic refraction measurements in the north-west Indian Ocean. J Geophys Res 71:427–449

    Google Scholar 

  • Friend CRL, Nutman AP (1992) Response to U-Pb isotope and whole rock geochemistry to CO2 induced granulite facies metamorphism, Kabbaldurga, Karnataka, south India. Contrib Mineral Petrol 111:299–310

    Google Scholar 

  • Fyfe WS (1973) The granulite facies, partial melting and Archaean crust. Phil Trans R Soc London 73:457–461

    Google Scholar 

  • Ganguly J, Battacharya PK (1987) Xenoliths in Proterozoic kimberlites from southern India: petrology and geophysical implications. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 249–265

    Google Scholar 

  • Ghose NC (1983) Geology, tectonics and evolution of the Chotanagpur granite-gneiss complex, eastern India. In: Sinha-Roy S (ed) Structure and tectonics of precambrian rocks of India, recent researches in geology, vol 10. Hindusthan Publication Corpus, Delhi, pp 211–247

    Google Scholar 

  • Ghose NC, Chaterjee N (2008) Petrology, tectonic setting and source of dykes and related magmatic bodies in the Chotanagpur gneissic complex, eastern India. In: Srivastava RK, Sivaji C, Chalapathi Rao N (eds) Indian dykes. Narosa Publishing House, New Delhi, pp 471–493

    Google Scholar 

  • Gokarn SG, Rao CK, Singh BP (1995) Crustal structure in southeast Rajasthan using magnetotelluric technique. Geol Soc India Mem 31:373–381

    Google Scholar 

  • Gokarn SG, Gupta G, Rao CK (2004) Geoelectric structure of the Dharwar craton from magnetotelluric studies: archaean suture identified along the Chitradurga-Gadag schist belt. Geophys J Int 158:712–728

    Google Scholar 

  • Goodwin AM (1996) Principles of precambrian geology, vol 327. Academic Press, San Diego, CA

    Google Scholar 

  • Griffin WL, Kobussen AF, Babu EVSSK, O’Reilly SY, Norris R, Sen Gupta P (2009) A translithospheric suture in the vanished 1-Ga lithospheric root of south India: evidence from contrasting lithosphere sections in the Dharwar craton. Lithos 112:1109–1119

    Google Scholar 

  • Gupta SN, Arora YK, Mathur RK, Iqballuddin PB, Sahai TN, Sharma SB (1980) Tectonothermal evolution of the Banded Gneissic Complex in central Rajasthan, NW India: present status and correlation. https://www.researchgate.net/publication/251670885

  • Gupta ML, Sundar A, Sharma SR, Singh SB (1993) Heat flow in the Bastar craton, central Indian shield: implications for thermal characteristics of Proterozoic cratons. Phys Earth Planet Inter 78:23–31

    Google Scholar 

  • Gupta SN, Arora YK, Mathur RK, Iqballuddin Prasad B, Sahai TN, Sharma SB (1997) The Precambrian geology of the Aravalli region, southern Rajasthan and northeastern Gujarat. Geol Surv Ind Mem 123:262

    Google Scholar 

  • Gupta S, Rai SS, Prakasam KS, Srinagesh D, Chadha RK, Priestly K, Gaur VK (2003) First evidence for anomalous thick crust beneath mid-Archaean western Dharwar Craton. Curr Sci 84:1219–1226

    Google Scholar 

  • Hansen EC, Janardhan AS, Newton RC, Prame WKBN, Ravindra Kumar GR (1987) Arrested charnockite formation in southern India and Sri Lanka. Contrib Mineral Petrol 96:225–244

    Google Scholar 

  • Hari N, Kaila KL, Verma RK (1968) Continental margins of India. Can J Earth Sci 5:1051–1065

    Google Scholar 

  • Harinarayana T, Naganjaneyulu K, Manoj C, Patro BPK, Kareemunnisa Begum S, Murthy DN, Rao M, Kumaraswamy VTC, Virupakshi G (2003) Magentotelluric investigations along Kuppam-Palani geotransect, south India-2-D modelling results. Geol Soc Ind Mem 50:107–124

    Google Scholar 

  • Harlov DE, Newton RC, Hansen EC, Janardhan AS (1997) Oxide and sulfide minerals in highly oxidized, Rb-depleted Archean granulites of the Shevaroy Hills Massif, South India: oxidation states and the role of metamorphic fluids. Jour. Metamorph Geol 15:701–717

    Google Scholar 

  • Harris NBW, Santosh M (1993) Geochronological constraints on granulite formation in southern India and Sri Lanka. Geol Soc Ind Mem 25:361–379

    Google Scholar 

  • Harris NBW, Santosh M, Taylor PN (1982) Crustal evolution in South India. J Geol 102:139–150

    Google Scholar 

  • Harris NBW, Santosh M, Taylor PN (1994) Crustal evolution in southern India: constraints from Nd isotopes. J Geol 102:139–150

    Google Scholar 

  • Heron AM (1953) Geology of Central Rajputana. Geol Surv Ind Mem 79:339

    Google Scholar 

  • Hinz K (1981) A hypothesis on terrestrial catastrophies-wedges of very thick oceanward dipping layers beneath passive continental margins-their origin and palaeoenvironmental significance. Geologisch Jahrbuch Reihe E Geophys 22:3–28

    Google Scholar 

  • Hinz K, Closs H (1969) Ergebenisseseismischer Untersuchungenimnordlichen Arabischen Meer, ein Beitragzurinternationalen IndischenOzean Expedition, III Auswertung und Ergebnisse der seismichen Messungen und ihregeologische Deutung. Meteor Forschungsergebn Reihe C 2:9–28

    Google Scholar 

  • Hofmann C, Feraud G, Courtillot V (2000) 39Ar/40Ar dating of mineral separates and whole rocks from Western Ghats lava pile: further constraints on duration and age of the Deccan Traps. Earth Planet Sci Lett 180:13–27

    Google Scholar 

  • Holbrook WS, Keleman PB (1993) Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup. Nature 364:433–436

    Google Scholar 

  • Holland TH (1907) Classification of Indian strata. Imperial Gazetteer of India, Government of India 1:1–321

    Google Scholar 

  • Iyengar SVP, Murthy YGK (1982) The evolution of the Archaean-Proterozoic crust in parts of Bihar and Orissa, eastern India. Rec Geol Surv India 112:1–5

    Google Scholar 

  • Jain SC, Nair KKK, Yedekar DB (1995) Geology of the Son-Narmada-Tapti lineament in Central India. Geol Surv Ind Sp Publ 10:1–154

    Google Scholar 

  • Janardhan AS, Newton RC, Hansen EC (1982) The transformation of amphibolites facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contrib Mineral Petrol 79:130–149

    Google Scholar 

  • Jayananda M, Peucat J-J (1996) Geochronological framework of southern India. Gondwana Research Group Mem 3:53–75

    Google Scholar 

  • Julia J, Jagadeesh S, Rai SS, Owens TJ (2009) Deep crustal structure of the Indian shield from joint inversion of P wave receiver functions and Rayleigh wave group velocities: implications for Precambrian crustal evolution. J Geophys Res 114. https://doi.org/10.1029/2008JB006261

  • Kaila KL (1988) Mapping the thickness of Deccan Trap flows in India from DSS studies and inferences about a hidden Mesozoic basin in the Narmada–Tapti region. In: Subbarao KV (ed) Deccan flood basalts, vol 10. Geological Society of India, Memoirs, Bangalore, pp 91–116

    Google Scholar 

  • Kaila KL, Krishna VG (1992) Deep seismic sounding studies in India and major discoveries. Curr Sci 62:117–154

    Google Scholar 

  • Kaila KL, Reddy PR (1982) Crustal and upper mantle velocity structures of the earth from study of the body waves produced by earthquakes. Geophys Res Bull 20:19–36

    Google Scholar 

  • Kilaru S, Goud K, Rao VK (2013) Crustal structure of the western Indian shield: model based on regional gravity and magnetic data. Geosci Front 4:717. https://doi.org/10.1016/j.gsf.2013.02.006

    Article  Google Scholar 

  • Kiselev S, Vinnik L, Oreshin S, Gupta S, Rai SS, Singh A, Ravi Kumar M, Mohan G (2008) Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions. Geophys J Int 173:1106–1118

    Google Scholar 

  • Krishna KS, Gopala Rao D, Sar D (2006) Nature of the crust in the Laxmi Basin (14o–20oN) western continental margin of India. Tectonics 25. https://doi.org/10.1029/2004TC001747

  • Krogstad EJ, Balakrishnan S, Mukhopadhyay DK, Rajamani V, Hanson GN (1989) Plate tectonics, 2.5 billion years ago: evidence at Kolar, South India. Science 243:1337–1340

    Google Scholar 

  • Krogstad EJ, Hanson GN, Rajamani V (1991) U-Pb ages of zircon and sphene for two gneiss terrains adjacent to the Kolar schist belt South India: evidence for separate crustal histories. J Geol 99:801–816

    Google Scholar 

  • Kumar P, Yuan S, Ravi Kumar M, Kind R, Li CX, Chadha K (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897

    Google Scholar 

  • Lightfoot PC, Hawkesworth CJ, Sethna SF (1987) Petrogenesis of rhyolites and trachytes from Deccan traps: Sr-Nd, and Pb isotopes and trace element evidence. Contrib Mineral Petrol 95:44–54

    Google Scholar 

  • Mahadevan TM (1994) Deep continental structure of India: a review. Geol Soc Ind Mem 28:569

    Google Scholar 

  • Mahadevan TM (2003) Kuppam-Palani transect programme and new insights into continental evolution. In: Madevan TM, Arora BR, Gupta KR (eds) Indian continental lithosphere, vol 53. Geological Society of India, Memoirs, Bangalore, pp 99–114

    Google Scholar 

  • Mahoney JJ (1988) Deccan traps. In: MacDougall JD (ed) Continental flood basalts. Kluwer Academic, Dordrecht, pp 151–194

    Google Scholar 

  • Mahoney JJ, Duncan RA, Khan W, Gnos E, McCormick GR (2002) Cretaceous volcanic rocks of the southern Tethyan suture zone, Pakistan: implications for the reunion hot spot and Deccan Traps. Earth Planet Sci Lett 203:295–310

    Google Scholar 

  • Mandal B, Vijaya Rao V, Sarkar D, Bhaskar Rao YJ, Raju S, Karuppannan P, Sen MK (2018) Deep crustal seismic reflection images from the Dharwar craton, South India-evidence for Neoarchaean subduction. Geophys J Int 212:777–794. https://doi.org/10.1002/2016JB012948. Beneath Indian Continent. 121, 7450

    Article  Google Scholar 

  • Maurya S, Montagner JP, Ravi Kumar M, Stutzman E, Kiselev E, Burgess G, Purnachandra Rao N, Srinagesh D (2016) Imaging the lithospheric structure beneath the Indian continent. J Geophys Res. https://doi.org/10.1002/2016JB01948

  • Mazumder R, Eriksson PG (eds) (2015) Precambrian basins of India: stratigraphy and tectonic context. Geol Soc Lond Mem 43:29–54

    Google Scholar 

  • Meert JG, Pandit MK (2015) The Archaean and Proterozoic history of peninsular India: tectonic framework for Precambrian sedimentary basins of India. Geol Soc Lond Mem 43:29–54

    Google Scholar 

  • Meert JG, Pandit MK, Pradhan VR, Banks J, Sirianni R, Stroud M, Newstead B, Gifford J (2010) Precambrian crustal evolution of Peninsular India: a 3.0 billion year odyssey. J Asian Earth Sci 39:483–515

    Google Scholar 

  • Meissner R (1986) The continental crust: a geophysical approach, vol 426. Academic Press, Orlando

    Google Scholar 

  • Meissner B, Deters P, Srikantappa C, Kohler H (2002) Geochronological evolution of the Moyar, Bhavani and Palghat shear zones of southern India: implications for East Gondwana correlation. Precambrian Res 114:149–175

    Google Scholar 

  • Misra S (2006) Precambrian chronostratigraphic growth of Singhbhum craton, eastern Indian shield: an alternative model. J Geol Soc India 67:356–378

    Google Scholar 

  • Misra DC, Ravi Kumar M (2008) Geodynamics of Indian plate and Tibet: Buoyant lithosphere, rapid drift and channel flow from gravity studies. Geol Soc Ind Mem 68:151–172

    Google Scholar 

  • Mita R (2003) Multi-platform imaging of lithospheric magnetic anomalies. In: Madevan TM, Arora BR, Gupta KR (eds) Indian continental lithosphere, vol 53. Geological Society of India, Memoirs, Bangalore, pp 233–245

    Google Scholar 

  • Mitra S, Priestley KF, Gaur VK, Rai SS (2006) Shear wave structure of south Indian lithosphere from Raleigh wave phase velocity measurements. Bull Seismol Soc Am 96:1551. https://doi.org/10.1785/0120050116

    Article  Google Scholar 

  • Mohanty SP (2012) Spaciotemporal evolution of the Satpura mountain belt of India: a comparison with Capricorn orogen of Western Australia and implication for evolution of the supercontinent Columbia. Geosci Front 3:241–267

    Google Scholar 

  • Mooney WD, Laske G, Masters TG (1998) CRUST 5.1: a global crustal model at 5ox5o. J Geophys Res 103:727–747

    Google Scholar 

  • Mukhopadhyay D (1988) Precambrian of eastern Indian shield: Perspective of the problem. Geol Soc Ind Mem 8:1–12

    Google Scholar 

  • Mukhopadhyay D, Santhil Kumar P, Srinivasan R, Battacharya T (2003) Nature of the Palghat-Cauveri lineament in the region south of Namakkal, Tamil Nadu: implications for terrain assembly in the south Indian granulite province. Geol Soc Ind Mem 50:279–296

    Google Scholar 

  • Murthy NGK (1987) Mafic dyke-swarms of India. Spec Publ Geol Assoc Can 34:393–400

    Google Scholar 

  • Murthy TVGNRK, Misra SK (1981) The Narmada-Son lineament and the structure of the Narmada rift system. J Geol Soc India 22:112–120

    Google Scholar 

  • Nagarjunneyulu K, Santosh M (2012) Nature and thickness of lithosphere beneath the Archaean Dharwar craton, southern India: a magnetotelluric model. J Asian Earth Sci 49:349–361

    Google Scholar 

  • Naini BR, Talwani M (1982) Structural framework and evolutionary history of the continental margin of western India. Am Assoc Pet Geol Mem 34:167–191

    Google Scholar 

  • Naqvi SM, Rogers JJW (1987) Precambrian of India. Oxford monograph on geology and geophysics, vol 6. Oxford University Press, Oxford, pp 57–81

    Google Scholar 

  • Naqvi SM, Divakar Rao V, Narain H (1974) The protocontinental growth of the Indian shield and the antiquity of its rift valleys. Precambrian Res 1:645–698

    Google Scholar 

  • Narayanaswamy S (1975) Proposal for charnockite-khondalite system in the Archaean shield of Peninsular India. In: Precambrian geology of peninsular India. Geol Surv Ind Mis Publ 23:1–17

    Google Scholar 

  • Negi JG, Pandey OP, Agrawal PK (1986a) Supermobility of hot Indian lithosphere. Tectonophysics 13:147–156

    Google Scholar 

  • Negi JG, Thakur NK, Agrawal PK (1986b) Crustal magnetisation-model of the Indian subcontinent through inversion of satellite data. Tectonophysics 122:123–133

    Google Scholar 

  • Negi JG, Agrawal PK, Pandey CP (1987) Large variation in Curie depth and lithospheric thickness beneath the Indian subcontinent and case for magnetothermometry. Geophys J R Astron Soc 88:763–775

    Google Scholar 

  • Negi JG, Agrawal PK, Thakur NK (1989) Inversion of regional gravity anomalies and main features of the deep crustal geology of India. Tectonophysics 165:155–165

    Google Scholar 

  • Nehru CE, Reddy AK (1989) Ultramafic xenoliths from Wajrakarur kimberlite, India. In: Ross J et al (eds) Kimberlites and related rocks, vol 14. Special Publication Geological Society of Australia, Hornsby, pp 745–759

    Google Scholar 

  • Newton RC, Hansen EC (1983) The origin of Proterozoic and late Archaean charnockites-evidence from field relations and experimental petrology. https://doi.org/10.1130/MEM161-p167

  • Newton RC, Smith JV, Windley BE (1980) Carbonic metamorphism, granulites and crustal growth. Nature 288:45–50

    Google Scholar 

  • Oreshin SI, Vinnik LP, Kiselev SG, Rai SS, Prakasam KS, Treussov AV (2011) Deep seismic structure of the Indian shield western Himalaya, Ladakh and Tibet. Earth Planet Sci Lett 307:415–419

    Google Scholar 

  • Pandey A, Pandey DK (2015) Mechanism of crustal extension in the Laxmi Basin, Arabian Sea. Geodesy Geodynam 6:409–422

    Google Scholar 

  • Paul DK, Potts RJ, Rex DC, Beckinsale RD (1977) Geochemical and petrological study of the Girnar, igneous complex Deccan volcanic province. India Bull Geol Soc Amer 88:227–234

    Google Scholar 

  • Peucat J-J, Vidal P, Bertrand-Griffiths J, Condie KC (1989) Sr-Nd isotope systematics in the Archaean low to high grade transition zone of southern India: syn accretion vs post-accretion granulites. J Geol 97:537–550

    Google Scholar 

  • Prakasam KS, Rai SS (2003) Crustal thickness and composition in eastern Dharwar craton. In: Madevan TM, Arora BR, Gupta KR (eds) Indian continental lithosphere, vol 53. Geological Society of India, Memoirs, Bangalore, pp 115–127

    Google Scholar 

  • Prasad ASSSRS, Venkateswarlu N, Reddy PR (2005) Crustal density model along Gopali- Port Canning profile, West Bengal basin using seismic and gravity data. J Indian Geophys Union 9:235–239

    Google Scholar 

  • Qureshy MN (1970) Relation of gravity to elevation, geology and tectonics in India. Proc. 2nd Symp. on Upper Mantle Project, NGRI, 1–20

    Google Scholar 

  • Radhakrishna BP, Naqvi SM (1986) Precambrian continental crust of India and its evolution. J Geol 94:145–166

    Google Scholar 

  • Radhakrishna BP, Ramakrishnan M (1988) Archaean-Proterozoic boundary in India. J Geol Soc India 32:263–278

    Google Scholar 

  • Raith MM, Srikantappa C, Ashamanjeri KG, Spiering B (1990) The granulite terrane of the Nilgiri Hills (Southern India): characterisation of high-grade metamorphism. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution, NATO ASI Series C, vol 311. Kluwer Academic, Dordrecht, pp 339–365

    Google Scholar 

  • Raith MM, Srikantappa C, Buhl D, Kohler H (1999) The Nilgiri enderbites, South India: nature and age constraints on protolith formation, high-grade metamorphism and cooling history. Precambrian Res 98:129–150

    Google Scholar 

  • Raith MM, Sengupta P, Spiering B, Srikantappa C (2010) Growth and breakdown of corundum in layered mafic complexes of the Palghat Cauvery Shear Zone, South India. 88th Annual Meeting of the German Mineralogical Society, Munster, http://www.dmg-home.de/Abstracts/DMG2010_Abstracts.pdf.

  • Raith MM, Brandt S, Sengupta P, Berndt J, John T, Srikantappa C (2016) Element mobility and behaviour of zircon during HT metasomatism of ferroan basic granulite at Ayyarmalai, South India: evidence for polyphase Neoarchaean crustal growth and multiple metamorphism in the northeastern Madurai province. J Petrol 57:1729–1774

    Google Scholar 

  • Ramachandra HM (2004) A review of terrain evaluation in the Precambrian Dharwar and Bastar cratons. Geol Sur Ind Sp Publ 84:1–21

    Google Scholar 

  • Ramakrishnan M (1988) Tectonic evolution of the Archaean high grade terrain of South India. J Geol Soc India 31:118–119

    Google Scholar 

  • Ramakrishnan M (1994) Stratigraphic evolution of the Dharwar craton. In: A manual of the geology of India, Vol. 1, MGD Centenary Volume. Geol Surv Ind Sp Publ 77:6–35

    Google Scholar 

  • Ramakrishnan M, Vaidhyanadhan M (2008) Geology of India, vol 1. Geological Society of India, Bangalore, p 556

    Google Scholar 

  • Rao TCS (1976) Structural features of the ocean bottom off the west coast of the Indian sub-continent. J Mar Biol Assoc India 18:126–139

    Google Scholar 

  • Raval UL (2003) Interaction of mantle plume with Indian continental lithosphere since the cretaceous. Geol Soc Ind Mem 53:449–479

    Google Scholar 

  • Reddy PR, Rao IBP (2003) Deep seismic studies in central Indian shield—a review. Geol Soc Ind Mem 53:79–98

    Google Scholar 

  • Reddy PR, Rajendra Prasad B, Vijaya Rao V, Saini K, Khare P, Reddy MS (2003a) Deep seismic reflection and refraction/wide angle reflection studies along Kuppam-Palani transect in the southern granulite terrain in India. Geol Soc Ind Mem 50:79–106

    Google Scholar 

  • Reddy TAK, Sridhar M, Ravi S, Chakravarthy V (2003b) Petrology and geochemistry of Krishna lamproite field, Andhra Pradesh. J Geol Soc India 61:131–140

    Google Scholar 

  • Reychert CA, Shearer PM (2009) A global view of the lithosphere-asthenosphere boundary. Science 324:495–498

    Google Scholar 

  • Roy AB, Jakhar SR (2002) Geology of Rajasthan, Northwest India: precambrian to recent. Scientific Publishers (India), Jodhpur, p 421

    Google Scholar 

  • Roy S, Mareschal J-C (2011) Constraints on the deep thermal structure of the Dharwar craton, India, from heat flow, shear wave velocities and mantle xenoliths. J Geophys Res 116:B02409. https://doi.org/10.1029/2010JB007796

    Article  Google Scholar 

  • Saha AK (1994) Crustal evolution of Singhbhum-North Orissa, eastern India. Geol Soc Ind Mem 27:1–341

    Google Scholar 

  • Saitoh Y, Tsunogae T, Santosh M, Chetty TRK, Horie K (2011) Neoarchean high-pressure metamorphism from the northern margin of the Palghat-Cauvery suture zone southern India: petrology and zircon SHRIMP geochronology. J Asian Earth Sci 42:268–285

    Google Scholar 

  • Santosh M, Maruyama S, Sato K (2009) Anatomy of a Cambrian suture in Gondwana: pacific-type orogeny in southern India? Gondwana Res 16(2):321–341

    Google Scholar 

  • Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Rex D, Tingdong L, Xuchang M, Jan MQ, Thakur VC, Kumar S (1987) The closing of the Tethys and the tectonics of the Himalaya. Bull Geol Soc Am 98:678–701

    Google Scholar 

  • Selvan TA (1981) Anorthosite-gabbro-ultramafic complex around Gobichettypalayam, Tamil Nadu, and their possible relation to Sittampundi type Anorthosite complex. Ph. D. Thesis, University of Mysore (unpublished)

    Google Scholar 

  • Sengupta S, Acharyya SK, DeSmith JB (1997) Geochemistry of Archaean volcanic rocks from Iron Ore Supergroup, Singhbhum, eastern India. Proc Indian Acad Sci (Earth Planet Sci) 106:327–342

    Google Scholar 

  • Sengupta P, Dutta U, Bhui UK, Mukhopadhyay D (2009) Genesis of wollastonite- and grandite-rich skarns in a suite of marble–calc-silicate rocks from Sittampundi, Tamil Nadu: constraints on the P–T–fluid regime in parts of the Pan-African mobile belt of South India. Mineral Petrol 95:179–200

    Google Scholar 

  • Sharma RS (1990) Metamorphic evolution of rocks from the Rajasthan craton, NW Indian shield. In: Naqvi SM (ed) Precambrian continental crust of india and its economic resources. Elsevier, Amsterdam, pp 349–366

    Google Scholar 

  • Sharma RS (2009) Cratons and mobile belts of India, vol 304. Springer Verlag, Berlin Heidelberg

    Google Scholar 

  • Sharma SD, Ramesh DS (2013) Imaging mantle lithosphere for diamond prospecting in Southeast India. Lithosphere 5:331–342

    Google Scholar 

  • Shekhawat LS, Pandit MK, Joshi DW (2007) Geology and geochemistry of palaeoproterozoic low grade metabasic rocks from Salumber area, Aravalli Supergroup, NW India. J Earth Sys Sc 116:511–524

    Google Scholar 

  • Singh AP, Mishra DC, Vijay Kumar V, Vyagreswara Rao MBS (2003) Gravity magnetic signature and crustal architecture along Kuppam-Palani geotransect, South India. Geol Soc Ind Mem 50:139–163

    Google Scholar 

  • Singh A, Mercier JP, Ravi Kumar M, Srinagesh D, Chadha RK (2014) Continental scale body wave tomography of India: evidence for attrition and preservation of lithospheric roots. Geochem Geophys Geosyst 15:658–675

    Google Scholar 

  • Srikantappa C (1996) The Nilgiri granulites. In: Santosh M, Yoshida M (eds) The Archaean and Proterozoic terrains of southern India within eastern Gondwana, vol 3. Gondwana Research Group Members, Kochi, pp 185–222

    Google Scholar 

  • Srinivas Rao G, Radhakrishna M, Sreejit KM, Krishna KS, Bull JM (2016) Lithosphere structure and upper mantle characteristics below Bay of Bengal. Geophys J Int 206:675–695

    Google Scholar 

  • Srivastava RK, Sinha AK, Kumar S (2012) Geochemical characteristics of Mesoproterozoic metabasite dykes of Chotanagpur gneissic terrain, eastern India: implications for their emplacement in a plate margin tectonic environment. J Earth Syst Sci 121:509–523

    Google Scholar 

  • Srivastava RK, Kumar S, Sinha AK, Chalapathi Rao NV (2014) Petrology and geochemistry of high-titanium and low-titanium mafic dykes from the Damodar valley Chotanagpur gneiss terrain, eastern India and their relations to cretaceous mantle plume(s). J Asia Earth Sci 84:34–50

    Google Scholar 

  • Swami Nath J, Ramakrishnan M (1981) Early Precambrian supracrustals of southern Karnataka. Geol Surv Ind Mem 112:1–350

    Google Scholar 

  • Takin M (1966) An interpretation of the positive gravity anomaly over Bombay and West coast of India. Geophys J R Astron Soc 11:527–537

    Google Scholar 

  • Tewari HC, Murthy ASN, Kumar P, Sridhar AR (2001) A tectonic model of the Narmada region. Curr Sci 80:873–878

    Google Scholar 

  • Verma RK (1985) Gravity field, seismicity and tectonics of the Indian peninsula and the Himalaya. Allied Publication Pvt. Ltd., New Delhi, p 203

    Google Scholar 

  • Verma RK, Subramanyam C (1984) Gravity anomalies and the Indian lithosphere: Review and analysis of existing gravity data. Tectonophysics 105:141–161

    Google Scholar 

  • Viswanathan TV, Gopalakrishnan K, Ganesan TM, Raman R (1990) Cauvery suture zone-its implications. Group discussion on “Suture Zones-Young and Old” Wadia Institute of Himalayan Geology and Geol Soc Ind Geol Surv Ind. extended abstracts, 47–54

    Google Scholar 

  • White RS, Mckenzie DP (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729

    Google Scholar 

  • Zachariah JK, Mohanti MK, Rajamani V (1996) Accretionary evolution of the Ramagiri schist belt, Eastern Dharwar craton. J Geol Soc India 47:279–291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dessai, A.G. (2021). Indian Shield. In: The Lithosphere Beneath the Indian Shield. Modern Approaches in Solid Earth Sciences, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-52942-0_2

Download citation

Publish with us

Policies and ethics