Skip to main content

Lithosphere Architecture

  • Chapter
  • First Online:
The Lithosphere Beneath the Indian Shield

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 20))

  • 432 Accesses

Abstract

The Indian shield displays considerable variation in lithosphere composition and architecture not only among cratons but even intra-cratons. The Aravalli Craton has a transparent upper crust (av ~ 20 km) with variable thickness, averaging about 20 km. The Moho occurs at about 40 km. The crust in the Bundelkhand region is ~40 km thick, but reduces to 8–15 km at the continental margin. The lower crust consists of plagioclase-poor mafic granulites and eclogites under- and intra-plated by pyroxenites/websterites which are expressed by strong seismic reflectors. In the south, in Bastar Craton the lower crust is strongly interlayered by ultramafic- and mafic-lithologies.

The WDC crust in the mid-latitudes (Kelsi-Loni) is differentiated into three velocity layers with a fairly well-developed mid-crustal horizon (~12–26 km). The lower crust consists of layered and isotropic, plagioclase-poor, mafic granulites along with eclogites. These coexist with plagioclase-rich felsic granulites and are under- and intra-plated by spinel lherzolites and harzburgites/dunites.

The velocity structure of the EDC is not much different from that of the WDC except that the lower crust beneath this region shows strong westward dipping reflectors. These indicate distinct mafic layering due to the presence of eclogites, an abundant lithology in the SCLM of this region.

In the SGT, the broad velocity picture is identical to that observed in the E-W transects across the cratons to the north except that a relatively low-velocity zone (Vp: 6.5–7.0 km/s; 5–10 km) is sandwiched between 12 and 22 km.

Offshore, both in the west and east, the upper continental crust is missing. Oceanic sediments and volcanic rocks are directly underlain by layers of Vp: 6.2 and 7.2 km/s possibly of mafic granulites. The layer beneath with velocity 7.6–8.0 km/s is also conspicuous by its absence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal PK, Pandey OP (2004) Unusual lithospheric structure and evolutionary pattern of the cratonic segment of the south Indian shield. Earth Planets Space 56:139–150

    Article  Google Scholar 

  • Barton P, Matthews D, Hall J, Warner M (1984) Moho beneath the North Sea compared on normal incidence and wide-angle seismic records. Nature 308:97–105

    Article  Google Scholar 

  • Biswas SK (1989) Hydrocarbon exploration in western off-shore basins of India. Geol Surv India Pub No 24: 185–194

    Google Scholar 

  • Carlswell DA, Griffin WL, Kresten P (1984) Peridotite nodules from the Ngopetsoeu and Lipelaneng kimberlite. In: Kornprobst J (ed) Kimberlite II: the mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 229–243

    Chapter  Google Scholar 

  • Chekunov AV, Sollugub VB, Starostenko VI, Kharetchiko GE, Rusakov VG, Kosttukovich AS (1984) Structure of the earth’s crust and upper mantle below Hindustan and the northern part of the Indian Ocean from geophysical data. Tectonophysics 101:63–73

    Article  Google Scholar 

  • Christensen I (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101:3139–3156

    Article  Google Scholar 

  • Christensen I, Fountain DM (1975) Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite. Geol Soc Am Bull 86:227–236

    Article  Google Scholar 

  • Closs H, Hinz K (1967) Refraction seismic measurements in the northern Arabian Sea. Paper presented at the symposium on Upper Mantle Project, Hyderabad, India, Jan 4–8, 1967 (quoted by Mahadevan, 1994)

    Google Scholar 

  • Curry JR (1991) Possible greenschist metamorphism at the base of a 22 km sediment section, Bay of Bengal. Geology 19:1097–1100

    Article  Google Scholar 

  • Dawson JB (1980) Kimberlite and their xenoliths, vol 224. Spinger Velag, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • den Berg R, Stephan Daly J, Salisbury M (2005) Seismic velocities of granulite facies xenoliths from Central Ireland: implications for lower crustal composition and anisotropy. Tectonophysics 407:81–99

    Article  Google Scholar 

  • Dessai AG, Markwick A, Vaselli O, Downes H (2004) Granulite and Pyroxenite xenoliths from the Deccan Trap: insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos 78:263–290

    Article  Google Scholar 

  • Dessai AG, Peinado M, Gokarn SG, Downes H (2009) Structure of the deep crust beneath the central Indian tectonic zone: an integration of geophysical and xenolith data. Gondwana Res 17:162–170

    Article  Google Scholar 

  • Dietz RS, Holden JC (1970) Reconstruction of Pangea break-up and dispersion of continents, Permian to present. J Geophys Res 75:4939–4956

    Article  Google Scholar 

  • Durrheim RJ, Mooney WD (1994) The evolution of the Precambrian lithosphere; seismological and geochemical constraints. J Geophys Res 99:15359–15374

    Article  Google Scholar 

  • Finlayson DM (1983) The midcrustal horizon under the Eromanga Basin, Eastern Australia. Tectonophysics 100:199–214

    Article  Google Scholar 

  • Foulger GR, Natland JH, Anderson DL (2005) Genesis of the Iceland melt anomaly by plate tectonic processes. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms, vol 388. Geological Society of America, Boulder, Colorado, pp 595–626

    Chapter  Google Scholar 

  • Francis TJG, Shor G Jr (1966) Seismic refraction measurements in the north-West Indian Ocean. J Geophys Res 71:427–449

    Article  Google Scholar 

  • Gokarn SG (2003) Electrical conductivity patters along transects over the Indian lithospheric domains of differing temporal evolution: a review. In: Madevan TM, Arora BR, Gupta KR (eds) Indian continental lithosphere, vol 53. Geological Society of India, Memoirs, Bangalore, pp 129–147

    Google Scholar 

  • Gopal Rao D, Krishna KS, Sar D (1997) Crustal evolution and sediment history of Bay of Bengal since Cretaceous. J Geophys Res 102:17747–17768

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY (1987) The composition of lower crust and the nature of the continental Moho-xenoliths evidence. In: Nixon PH (ed) Mantle xenolith. Wiley, New York, pp 413–430

    Google Scholar 

  • Griffin WL, Wass SY, Hollis JD (1984) Ultramafic xenoliths from Bullenmerri and Gnotuk Maars, Victoria, Australia: petrology of a subcontinental crust–mantle transition. J Petrol 25:53–87

    Article  Google Scholar 

  • Hale LD, Thomson GA (1982) The seismic reflection character of the continental Mohorovicic discontinuity. J Geophys Res 87:4625–4635

    Article  Google Scholar 

  • Harbison RN, Bassinger BC (1973) Marine geophysical study of Western India. J Geophys Res 78:432–440

    Article  Google Scholar 

  • Harley SL (1984a) The solubility of alumina in orthopyroxene coexisting with garnet in FeO-MgO-Al2O3-SiO2 and CaO-FeO-MgO-Al2O3-SiO2. J Petrol 25:53–87

    Article  Google Scholar 

  • Harley SL (1984b) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373

    Article  Google Scholar 

  • Ito K, Kennedy GC (1970) Melting and phase relations in a natural peridotite to 40 kilobars. Am J Sci 265:519–538

    Article  Google Scholar 

  • Jackson I, Arculus RA (1984) Laboratory wave velocity measurements on lower crustal xenoliths from Calcutteroo, South Australia. Tectonophysics 101:185–197

    Article  Google Scholar 

  • Jagadeesh J, Rai SS (2008) Thickness, composition, and evolution of the Indian Precambrian crust inferred from broadband seismological measurements. Precambrian Res 162:4–15. https://doi.org/10.1016/j.precamres.2007.07.009

    Article  Google Scholar 

  • Julia J, Jagadeesh S, Rai SS, Owens TJ (2009) Deep crustal structure of the Indian shield from joint inversion of P wave receiver functions and Rayleigh wave group velocities: implications for Precambrian crustal evolution. J Geophys Res 114. https://doi.org/10.1029/2008JB006261

  • Kaila KL (1988) Mapping the thickness of Deccan Traps flows in India from DSS studies and inferences about a hidden Mesozoic basin in the Narmada–Tapti region. In: Subbarao KV (ed) Deccan flood basalts, vol 10. Geological Society of India, Memoirs, Bangalore, pp 91–116

    Google Scholar 

  • Kaila KL, Krishna VG (1992) Deep seismic sounding studies in India and major discoveries. Curr Sci 62:117–154

    Google Scholar 

  • Kaila KL, Roy Choudhury K, Reddy PR, Krishna VG, Narayan H, Subbotin SI, Sollogub VB, Chekunov TV (1979) Crustal structure along Kavali-Udupi profile in the Indian peninsular shield from deep seismic sounding. J Geol Soc India 20:307–333

    Google Scholar 

  • Kaila KL, Murthy PRK, Rao VK, Kharatchko GE (1981a) Crustal structure from deep seismic sounding along Koyna II (Kelsi-Loni) profile in the Deccan Trap, India. Tectonophysics 73:365–384

    Article  Google Scholar 

  • Kaila KL, Reddy PR, Dixit MM, Lazarenko MA (1981b) Deep crustal structure at Koyna, Maharashtra, indicated by deep seismic soundings. J Geol Soc India 22:1–16

    Google Scholar 

  • Kaila KL, Reddy PR, Mall DM, Venkateswarlu N, Krishna VG, Prasad ASSSRS (1992) Crustal structure of the west Bengal basin, India from deep seismic sounding investigations. Geophys J Int 111(1):45–66

    Article  Google Scholar 

  • Kiselev S, Vinnik L, Oreshin SI, Gupta S, Rai SS, Singh A, Ravi Kumar M, Mohan G (2008) Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions. Geophys J Int 173:1106–1118

    Article  Google Scholar 

  • Kosarev GL, Oreshin SI, Vinnik LP, Kiselev SG, Dattatrayam RS, Suresh G, Baidya PR (2013) Heterogeneous lithosphere and the underlying mantle of the Indian subcontinent. Tectonophysics 592:175–186

    Article  Google Scholar 

  • Krishna VG, Kaila KL, Reddy PR (1991) Low velocity layers in the subcrustal lithosphere beneath the Deccan Traps region of western India. Phys Earth Planet Inter 67:288–302

    Article  Google Scholar 

  • Mahadevan TM (1994) Deep continental structure of India: a review. Geol Soc Ind Mem 28:569

    Google Scholar 

  • Mahadevan TM (2003) Kuppam-Palani transect programme and new insights into continental evolution. In: Madevan TM, Arora BR, Gupta KR (eds) Indian continental lithosphere, vol 53. Geological Society of India, Memoirs, Bangalore, pp 99–114

    Google Scholar 

  • Mahadevan TM (2008) Southern high grade domain a differentially transported Archaean lithospheric segment. Geol Surv Ind 74:89–99

    Google Scholar 

  • Mall DM, Rao VK, Reddy PR (1999) Deep crustal features in the Bay of Bengal: seismic signatures for plume activity. Geophys Res Lett 26:2545–2548

    Article  Google Scholar 

  • Mandal B, Vijaya Rao V, Sarkar D, Bhaskar Rao YJ, Raju S, Karuppannan P, Sen MK (2018) Deep crustal seismic reflection images from the Dharwar craton, South India-evidence for Neoarchaean subduction. Geophys J Int 212:777–794. https://doi.org/10.1002/2016JB012948

    Article  Google Scholar 

  • Mayhew MA (1982) Application of satellite magnetic anomaly data to Curie isotherm mapping. J Geophys Res 87:4846–4854

    Article  Google Scholar 

  • Mehnert KR (1975) The Ivrea Zone: a model of the deep crust. N Jb Mineral (Abh) 125:156–199

    Google Scholar 

  • Meissner R (1973) The Moho as a transition zone. Geophys Surv 1:195–216

    Article  Google Scholar 

  • Meissner R, Lüschen E, Flüh ER (1983) Studies of the continental crust by near vertical reflection methods: a review. Phys Earth Planet Inter 31:363–376

    Article  Google Scholar 

  • Mishra DC (1984) Magnetic anomalies — India and Antarctica. Earth Planet Sci Lett 71(1):173–180

    Article  Google Scholar 

  • Mita R (2003) Multi-platform imaging of lithospheric magnetic anomalies. In: Madevan TM, Arora BR, Gupta KR (eds) Indian continental lithosphere, vol 53. Geological Society of India, Memoirs, Bangalore, pp 233–245

    Google Scholar 

  • Mitra S, Priestley K, Gaur VK, Rai SS (2006) Shear wave structure of the south Indian lithosphere from Rayleigh wave phase velocity measurements. Geophys J Int 164:88–98. https://doi.org/10.1111/j.1365-246X.2005.02837.x

    Article  Google Scholar 

  • Mooney WD, Laske G, Masters TG (1998) CRUST 5.1: a global crustal model at 5ox5o. J Geophys Res 103:727–747

    Article  Google Scholar 

  • Murthy ASN, Tewari HC, Reddy PR (2004) 2-D crustal velocity structure along Hirapur-Mandla profile in Central India: an update. Pure Appl Geophys 161:165–184

    Article  Google Scholar 

  • Nagarjunneyulu K, Santosh M (2012) Nature and thickness of lithosphere beneath the Archaean Dharwar craton, southern India: a magnetotelluric model. J Asian Earth Sci 49:349–361

    Article  Google Scholar 

  • Naini BR, Leyden R (1973) Ganges Cone, a wide angle seismic reflection and refraction study. J Geophys Res 78:436–439

    Google Scholar 

  • Naini BR, Talwani M (1982) Structural framework and evolutionary history of the continental margin of western India. Am Assoc Pet Geol Mem 34:167–191

    Google Scholar 

  • Nickel KG, Green DH (1985) Empirical thermobarometry of garnet peridotites and implications for the nature of lithosphere, kimberlite and diamond. Earth Planet Sci Lett 73:158–170

    Article  Google Scholar 

  • Nicolas A, Boudier F, Bouchez JL (1980) Interpretation of peridotitic structures from ophiolitic and oceanic environments. Am J Sci 280:192–210

    Google Scholar 

  • Oreshin SI, Vinnik LP, Kiselev SG, Rai SS, Prakasam KS, Treussov AV (2011) Deep seismic structure of the Indian shield western Himalaya, Ladakh and Tibet. Earth Planet Sci Lett 307:415–419

    Article  Google Scholar 

  • Pandey DK, Clift PD, Kulhanek DK (2015) The expedition 355 scientists. Expedition 355 preliminary report: Arabian Sea monsoon. Int Ocean Discov Program. https://doi.org/10.2204/iodp.pr.355.2015

  • Prasad ASSSRS, Venkateswarlu N, Reddy PR (2005) Crustal density model along Gopali- Port Canning profile, West Bengal basin using seismic and gravity data. J Indian Geophys Union 9:235–239

    Google Scholar 

  • Radhakrishna M, Subramanyam C, Damodharan T (2010) Thin oceanic crust below Bay of Bengal inferred from 3-D gravity interpretation. Tectonophysics 493:93–105

    Article  Google Scholar 

  • Rai SS, Vijay Kumar T, Jagadeesh S (2005) Seismic evidence for significant crustal thickening beneath Jabalpur earthquake, 21 May 1997 source region in Narmada-Son lineament, central India. Geophys Res Lett 32:L22306. https://doi.org/10.1029/2005GL023580

    Article  Google Scholar 

  • Raith MM, Brandt S, Sengupta P, Berndt J, John T, Srikantappa C (2016) Element mobility and behaviour of zircon during HT metasomatism of ferroan basic granulite at Ayyarmalai, South India: evidence for polyphase Neoarchaean crustal growth and multiple metamorphism in the northeastern Madurai province. J Petrol 57:1729–1774

    Google Scholar 

  • Rao TCS, Rao VB (1986) Some structural features of the Bay of Bengal. Tectonophysics 124:141–153

    Article  Google Scholar 

  • Reddy PR, Rao IBP (2003) Deep seismic studies in central Indian shield-a review. Geol Soc Ind Mem 53:79–98

    Google Scholar 

  • Reddy PR, Mall DM, Prassad ASSSRS (1997) Subhorizontal layering in the lower crust and its tectonic significance in the Narmada-Son region, India. Pure Appl Geophys 149:525–540

    Article  Google Scholar 

  • Reddy PR, Misra DC, Sarma SVS, Harinarayana T, Divakara Rao V, Narayana BL, Singh SB (2001) Modelling the tectonic evolution of the southern granulite belt of the Indian shield using coincident seismic reflection/refraction, geological/geochemical, geochronological, gravity/magnetic, magnetotelluric and deep resistivity studies along the southern geotransect. Technical Report NGRI Exp-317 Category B 1–47

    Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the earth’s mantle. Mcgraw Hill, New York, p 618

    Google Scholar 

  • Rudnick RL (1992) Xenolith-samples of the lower continental crust. In: Fountain DM, Arculus RJ, Kay RW (eds) The continental crust. Elsevier, Amsterdam, pp 269–316

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the Continental Crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 3: the crust, 1st edn. Elsevier-Pergamon, Oxford, UK, pp 1–64

    Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the Continental Crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 3: the crust, 2nd edn. Elsevier-Pergamon, Oxford, UK, pp 1–51

    Google Scholar 

  • Shalivahan SS, Bhattacharya BB, Chalapathi Rao NV, Maurya VP (2014) Thin lithosphere-asthenosphere boundary beneath eastern Indian craton. Tectonophysics 612-613:128–133

    Article  Google Scholar 

  • Smith D (1977) The origin and interpretation of spinel pyroxene clusters in peridotite. J Geol 85:476–482

    Article  Google Scholar 

  • Srinivas Rao G, Radhakrishna M, Sreejit KM, Krishna KS, Bull JM (2016) Lithosphere structure and upper mantle characteristics below Bay of Bengal. Geophys J Int 206:675–695

    Article  Google Scholar 

  • Sutherland FL, Holis JD (1982) Mantle-lower crust petrology from inclusions in basaltic rocks in eastern Australia-an outline. J Vocanol Geotherm Res 14:1–29

    Article  Google Scholar 

  • Tatsumi Y, Suzuku T (2009) Tholeiitic vs calc-alkaline differentiation and evolution of the arc crust: constraints from melting experiments on a basalt from the Izu-Bonine-Mariana Arc. J Petrol 50:1575–1603

    Article  Google Scholar 

  • Tewari HC, Vijaya Rao V (2003) Structure and tectonics of the Proterozoic Aravalli-Delhi geological province, NW Indian peninsular shield. In: Madevan TM, Arora BR, Gupta KR (eds) Indian continental lithosphere, vol 53. Geological Society of India, Memoirs, Bangalore, pp 57–78

    Google Scholar 

  • Tewari HC, Murthy ASN, Kumar P, Sridhar AR (2001) A tectonic model of the Narmada region. Curr Sci 80:873–878

    Google Scholar 

  • Upton BJG, Aspen P, Chapman MA (1983) The upper mantle and deep crust beneath the British Isles: evidence from inclusions in volcanic rocks. J Geol Soc 140:105–122

    Article  Google Scholar 

  • Wasilewski P, Fountain DM (1982) The Ivrea Zone as a model for the distribution of magnetization in the continental crust. Geophys Res Lett 9:333–336

    Article  Google Scholar 

  • Wasilewski P, Mayhew MA (1982) Crustal xenoliths magnetic properties and long wave length anomaly source requirements. Geophys Res Lett 9:329–332

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  Google Scholar 

  • Whitemarsh RB (1974) Summary of general features of the Arabian Sea and Red Sea Cenozoic history. Leg 23 cores. Init Rep DSDP 23:115–1123

    Google Scholar 

  • Wilshire HG, Pike JEN (1975) Upper mantle diapirism: evidence from analogous features in alpine peridotites and ultramafic inclusions in basalts. Geology 3:467–470

    Article  Google Scholar 

  • Wilshire HG, Shervais JW (1975) Al-augite and Cr-diopside xenoliths in basaltic rocks from western United States. Phys Chem Earth 9:252–272

    Article  Google Scholar 

  • Wood BJ (1974) Solubility of alumina in orthopyroxene coexisting with garnet. Contrib Mineral Petrol 46:1–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dessai, A.G. (2021). Lithosphere Architecture. In: The Lithosphere Beneath the Indian Shield. Modern Approaches in Solid Earth Sciences, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-52942-0_4

Download citation

Publish with us

Policies and ethics