Skip to main content

Geothermal Structure

  • Chapter
  • First Online:
The Lithosphere Beneath the Indian Shield

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 20))

  • 400 Accesses

Abstract

The shield comprises cratons, both with steady-state and anomalous thermal structures. The WDC and Bundelkhand craton display thermal structure expressed by perturbed geotherms. The difference between the two is stark, whereas the WDC shows intra-craton variation in thermal structure and exhibits a Proterozoic geotherm overprinted by the Cenozoic thermal anomaly, the Bundelkhand craton has a Cenozoic thermal imprint with contributions from crustal accretion. These changes are the result of advective heat from magmas ponded at the crust-mantle boundary. The distribution of granulites and the eclogitic rocks provides an indication of the rate of thermal equilibration and its spatial distribution.

The thermal structure of the EDC and that of the adjoining Bastar Craton are different. They are characterised by cratonic geotherms distinct from the other two. The thermal thickness of the EDC lithosphere is similar to Archaean cratons elsewhere, but that of the WDC is analogous to the Mesozoic-Cenozoic terrains worldwide.

The heat flow picture is distinct from that of the geothermal structure. The WDC registers the lowest heat flow (29–32 mWm−2) with 35–40 km crustal thickness whereas the EDC has a heat flow of 25–51 mWm−2 (crustal thickness 34–36 km), Bastar 51–64 mWm−2 and Bundelkhand the least, 32–41 mWm−2. In the interior of the shield, the heat flow is 41–55 mWm−2 (31–18 km) whereas at the continental margin in the west, near Cambay basin it varies from 55–96 mWm−2 (crustal thickness 8–15 km). The high concentration of radioactive elements in the felsic granulites from the lower crust could contribute significantly to the surface heat flow.

In the SGT, the heat flow is 28–58 mWm−2 (crustal thickness 41–45 km). It is likely that this high heat flow is related to the metasomatic imprint. Both the western and eastern margins of the shield display gravity lows, negative magnetic anomalies, and are characterised by high geothermal gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allègre CJ, Lewin E, Dupre B (1988) A coherent crust-mantle model for the uranium-thorium-lead isotopic system. Chem Geol 70:762–766

    Google Scholar 

  • Amundsen HEF, Griffin WL, O’Reilly SY (1987) The lower crust and upper mantle beneath northwest Spitsbergen: evidence from xenoliths and geophysics. Tectonophysics 139:169–185

    Google Scholar 

  • Artemieva IM (2011) The lithosphere. Cambridge University Press, Cambridge, p 773

    Book  Google Scholar 

  • Artemieva IM, Mooney WD (2001) Thermal thickness and evolution of Precambrian lithosphere: a global study. J Geophys Res 106:16387–16414

    Google Scholar 

  • Artemieva IM, Mooney WD (2002) On the relation between cratonic lithosphere thickness, plate motions, and basal drag. Tectonophysics 358:211–231

    Google Scholar 

  • Ashwal LD, Morgan P, Kelley SA, Percival JA (1987) Heat production in an Archaean crustal profile and implications for heat flow and mobilisation of heat-producing elements. Earth Planet Sci Lett 85:439–450

    Google Scholar 

  • Babu EVSSK, Bhaskar Rao YJ, Mainkar D, Pastine JK, Srikant Rao R (2009) Mantle xenoliths from the Kodomali kimberlite pipe, Bastar craton, central India: evidence for decompression melting and crustal contamination in the mantle source. Geochim Cosmochim Acta Suppl 73(13):A66

    Google Scholar 

  • Ballard S, Pollack HN (1987) Diversion of heat by Archaean cratons: a model for southern Africa. Earth Planet Sci Lett 85:253–264

    Google Scholar 

  • Ballard S, Pollack HN, Skinner NJ (1987) Thermal heat flow in Botswana and Namibia. J Geophys Res 92:6291–6300

    Google Scholar 

  • Battacharya A, Mohanty L, Maji A, Sen SK, Raith M (1992) Non ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contrib Mineral Petrol 1:87–93

    Google Scholar 

  • Brey GP, Kohler T (1990) Geothermobarometry in four phase lherzolite II: new theromobarometers and practical assessment of existing thermobarometers. J Petrol 27:1353–1358

    Google Scholar 

  • Chadwick B, Ramakrishnan M, Vasudev VN, Viswanath MN (1989) Facies distribution and the structure of the Dharwar volcano-sedimentary basin: evidence for late Archaean transpression in southern India? J Geol Soc Lond 146:825–834

    Google Scholar 

  • Chadwick B, Vasudev MN, Krishna Rao B, Hegde GV (1992) The Dharwar Supergroup: basin development and implications for late tectonic setting in western Karnataka, southern India. In: Glover JE, Ho SE (eds) The Archaean terrains, processes and Metallogeny, vol 22. University of Western Australia Publication, Western Australia, pp 3–15

    Google Scholar 

  • Chalapathi R, Dongre AN, Wu FY, Lehmann B (2016) A late Cretaceous (ca. 90 Ma) kimberlite event in southern India: implications for sub-continental lithospheric mantle evolution and diamond exploration. Gondwana Res 35:378. https://doi.org/10.1016/j.gr.2015.06.006

    Article  Google Scholar 

  • Chapman DS, Furlong KP (1992) Thermal state of the continental lower crust. In: Fountain DM, Arculus RJ, Kay RW (eds) The continental crust. Elsevier, Amsterdam, pp 129–199

    Google Scholar 

  • Christensen I (1979) Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low velocity zones. J Geophys Res 84:6849–6857

    Google Scholar 

  • Cox KG (1988) Inaugural address. Proc. Field workshop on deccan flood basalt province. In: Subbarao KV (ed) Deccan flood basalts. Geol Soc Ind Mem, vol 10, pp 15–22

    Google Scholar 

  • Dessai AG, Knight K, Vaselli O (1999) Thermal structure of the lithosphere beneath the Deccan Traps along the western continental margin: evidence from xenoliths data. J Geol Soc India 54:585–598

    Google Scholar 

  • Dessai AG, Markwick A, Vaselli O, Downes H (2004) Granulite and Pyroxenite xenoliths from the Deccan trap: insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos 78:263–290

    Google Scholar 

  • Dessai AG, Peinado M, Gokarn SG, Downes H (2009) Structure of the deep crust beneath the central Indian tectonic zone: an integration of geophysical and xenolith data. Gondwana Res 17:162–170

    Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibrium. Contrib Mineral Petrol 71:13–22

    Google Scholar 

  • Fountain DM, Salisbury MH (1981) Exposed cross-section through the continental crust: implications for the crustal structure, petrology and evolution. Earth Planet Sci Lett 56:263–277

    Google Scholar 

  • Fountain DM, Salisbury MH, Furlong KP (1987) Heat production and thermal conductivity of rocks from the Pikwitonei-Sachigo continental cross-section, central Manitoba; implications for the thermal structure of the Archaean crust. Can J Earth Sci 24:1583–1594

    Google Scholar 

  • Ganguly J, Battacharya PK (1987) Xenoliths in Proterozoic kimberlites from southern India: petrology and geophysical implications. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 249–265

    Google Scholar 

  • Glennie EA (1951) Density or geological correction to gravity anomalies for the Deccan Traps, India. Mont Nat Roy Aust Geophys Supplement 6:179

    Google Scholar 

  • Gokarn SG, Gupta G, Rao CK (2004) Geoelectric structure of the Dharwar craton from magnetotelluric studies: Archaean suture identified along the Chitradurga-Gadag schist belt. Geophys J Int 158:712–728

    Google Scholar 

  • Griffin WL, Carlswell DA, Nixon PH (1979) Lower crustal granulites from Lesotho, South Africa. In: Boyd FR, Meyer HOA (eds) The mantle sample: inclusions in kimberlites and other Volcanics, Proceedings of the 2nd Inter. Kimberlite Conf., vol 2. American Geophysical Union, Washington, DC, pp 59–86

    Google Scholar 

  • Griffin WL, Kobussen AF, Babu EVSSK, O’Reilly SY, Norris R, Sen Gupta P (2009) A translithospheric suture in the vanished 1-Ga lithospheric root of south India: evidence from contrasting lithosphere sections in the Dharwar craton. Lithos 112:1109–1119

    Google Scholar 

  • Gupta ML (1982) Heat flow in the Indian peninsula-its geological and geophysical implications. Tectonophysics 8:71–90

    Google Scholar 

  • Gupta ML (1995) Thermal regime of the Indian shield. In: Gupta ML, Yamano M (eds) Heat flow and geothermal energy in Asia. IBH, Oxford, pp 63–81

    Google Scholar 

  • Gupta ML, Sharma SR, Sundar A (1991) Heat flow and heat generation in the Archaean Dharwar cratons and implications for the southern Indian shield geotherm and lithospheric thickness. Tectonophysics 194:107–122

    Google Scholar 

  • Jackson I (1993) Progress in the experimental study of seismic wave attenuation. Annu Rev Earth Planet Sci 21:375–406

    Google Scholar 

  • Jaupart C (1983) Horizontal heat transfer due to radioactivity contrasts: causes and consequences of linear heat flow relation. J R Astrom Soc 75:411–435

    Google Scholar 

  • Jaupart C, Mareschal J-C (1999) The thermal structure and thickness of continental roots. Lithos 48:93–114

    Article  Google Scholar 

  • Jones AG (1999) Imaging the continental upper mantle using electromagnetic methods. Lithos 48:57–80

    Article  Google Scholar 

  • Kaila KL, Reddy PR, Dixit MM, Koteshwar Rao P (1985) Crustal structure across the Narmada-Son lineaments, central India from deep seismic soundings. J Geol Soc India 26:465–480

    Google Scholar 

  • Kaila KL, Tiwari HC, Krishna VG, Dixit MM, Sarkar D, Reddy MS (1990) Deep seismic sounding studies in the north Cambay and Sanchor basins. Geophys J Int 103:621–637

    Article  Google Scholar 

  • Kent RW, Storey M, Saunders AD (1992) Large igneous provinces: site of plume impact or plume incubation? Geology 20:865–960

    Google Scholar 

  • Krishna VG, Kaila KL, Reddy PR (1989) Synthetic seismogram modelling of crustal seismic record sections from the Koyna DSS profile in the western India. In: Mereu RF, Mueller S, Fountain DM (eds) Properties and Processes of Earth’s lower crust, AGU Geophysical Monograph Series IUGG, vol 51. Wiley, New York, pp 143–157

    Chapter  Google Scholar 

  • Krogstad EJ, Hanson GN, Rajamani V (1991) U-Pb ages of zircon and sphene for two gneiss terrains adjacent to the Kolar schist belt south India: evidence for separate crustal histories. J Geol 99:801–816

    Article  Google Scholar 

  • Mahadevan TM (1994) Deep continental structure of India: a review. Geol Soc Ind Mem 28:569

    Google Scholar 

  • Mahadevan TM (2003) Kuppam-Palani transect programme and new insights into continental evolution. In: Madevan TM, Arora BR, Gupta KR (eds) Indian continental lithosphere, vol 53. Geological Society of India, Memoirs, Bangalore, pp 99–114

    Google Scholar 

  • Martin H (1993) The mechanism of petrogenesis of the Archaean continental crust: comparison with modern processes. Lithos 30:373–388

    Google Scholar 

  • Maurya S, Montagner JP, Ravi Kumar M, Stutzman E, Kiselev E, Burgess G, Purnachandra Rao N, Srinagesh D (2016) Imaging the lithospheric structure beneath the Indian continent. J Geophys Res. https://doi.org/10.1002/2016JB01948

  • McLennan SM, Taylor SR (1996) Heat flow and the chemical composition of the continental crust. J Geol 104:377–396

    Google Scholar 

  • Mitra S, Priestley KF, Gaur VK, Rai SS (2006) Shear wave structure of south Indian lithosphere from Raleigh wave phase velocity measurements. Bull Seismol Soc Am 96:1551. https://doi.org/10.1785/0120050116

    Article  Google Scholar 

  • Morgan P (1983) The thermal structure and thermal evolution of the continental lithosphere. Phys Chem Earth 15:107–193

    Google Scholar 

  • Morgan P (1989) Heat flow in the earth. In: James ED (ed) The Encyclopaedia of solid earth geophysics. Van Nostrand Rheinhold Co., New York, pp 624–646

    Google Scholar 

  • Negi JG, Pandey OP, Agrawal PK (1986) Supermobility of hot Indian lithosphere. Tectonophysics 13:147–156

    Google Scholar 

  • Negi JG, Agrawal PK, Pandey CP (1987) Large variation in curie depth and lithospheric thickness beneath the Indian subcontinent and case for magnetothermometry. Geophys J R Astron Soc 88:763–775

    Google Scholar 

  • Nehru CE, Reddy AK (1989) Ultramafic xenoliths from Wajrakarur kimberlite, India, In: Ross J, (Managing Ed.), Kimberlites and Related Rocks. Proc Fourth Int Kimberlite Conference, Sp Publ Geol Soc Aust (Pub by Blackwell Scientific) 14: 745–759

    Google Scholar 

  • Newton RC, Perkins D (1982) Thermodynamic calibration of geothermometers based on the assemblage garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz. Am Mineral 67:203–222

    Google Scholar 

  • Norton IO, Sclater JG (1979) A model for the evolution of the Indian ocean and the break-up of the Gondwana. J Geophys Res 84:6803–6830

    Google Scholar 

  • Nyblade AA (1999) Heat flow and the structure of Precambrian lithosphere. Lithos 48:81–91

    Google Scholar 

  • Nyblade AA, Pollack HN (1993) A global analysis of heat flow from Precambrian terrains: implications for the thermal structure of Archaean and Proterozoic lithosphere. J Geophys Res 98:12207–12218

    Google Scholar 

  • O’Nions RK, Evensen NM, Hamilton PJ (1979) Geochemical modelling of mantle differentiation and crustal growth. J Geophys Res 84:6091–6101

    Google Scholar 

  • O’Reilly SY, Griffin WL (1985) A xenoliths derived geotherm for southeastern Australia and its geophysical implications. Tectonophysics 111:41–63

    Google Scholar 

  • O’Reilly SY, Griffin WL (2000) Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53:217–232

    Google Scholar 

  • Pollock CH, Chapman DH (1977) On the regional variation of heat flow, geotherms and the thickness of the lithosphere. Tectonophysics 38:279–296

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Google Scholar 

  • Raith MM, Brandt S, Sengupta P, Berndt J, John T, Srikantappa C (2016) Element mobility and behaviour of zircon during HT metasomatism of ferroan basic granulite at Ayyarmalai, South India: evidence for polyphase Neoarchaean crustal growth and multiple metamorphism in the northeastern Madurai province. J Petrol 57:1729–1774

    Google Scholar 

  • Rao TCS (1976) Structural features of the ocean bottom off the west coast of the Indian sub-continent. J Mar Biol Assoc India 18:126–139

    Google Scholar 

  • Ray L, Senthil Kumar P, Reddy GK, Roy S, Rao GV, Srinivasan R, Rao RUM (2003) High mantle heat flow in a Precambrian granulite province: evidence from southern India. J Geophys Res 108. https://doi.org/10.1029/2001JB000688

  • Read GH, Grutter HS, Winter LDS, Luckman NB, Gaunt GFM (2003) Stratigraphic relations, kimberlite emplacement and lithospheric thermal evolution Quirico basin, Minas Gerais, Brazil. Proc. 8th Conf. Victoria, BC Canada, June 2003, FLA-0304

    Google Scholar 

  • Reddy PR, Mall DM, Prassad ASSSRS (1997) Subhorizontal layering in the lower crust and its tectonic significance in the Narmada-Son region, India. Pure Appl Geophys 149:525–540

    Google Scholar 

  • Roy S, Mareschal J-C (2011) Constraints on the deep thermal structure of the Dharwar craton, India, from heat flow, shear wave velocities and mantle xenoliths. J Geophys Res 116:B02409. https://doi.org/10.1029/2010JB007796

    Article  Google Scholar 

  • Roy S, Rao RUM (2000) Heat flow in the Indian shield. J Geophys Res 105:25587–25604

    Google Scholar 

  • Rudnick RL (1992) Xenolith-samples of the lower continental crust. In: Fountain DM, Arculus RJ, Kay RW (eds) The Continental Crust. Elsevier, Amsterdam, pp 269–316

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Google Scholar 

  • Rudnick RL, Nyblade AA (1999) The thickness and heat production of Archaean lithosphere: constraints from xenolith thermobarometry and surface heat flow. In: Frei Y, Bertka M, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation, a tribute to Francis R. Boyd. Chem Soc Sp Publ, vol 6, pp 3–12

    Google Scholar 

  • Rudnick RL, McDonough WF, O’Connel RJ (1998) Thermal structure, thickness and composition of continental lithosphere. Chem Geol 145:395–411

    Google Scholar 

  • Ryan CG, Griffin WL, Pearson NJ (1996) Garnet geotherms: a technique for derivation of P-T data from Cr-pyrope garnets. J Geophys Res 101:5611–5625

    Google Scholar 

  • Sachtleben T, Seck HA (1981) Chemical control of Al-solubility in orthopyroxene and its implications on pyroxene geothermometry. Contrib Mineral Petrol 78:157–165

    Google Scholar 

  • Salisbury MH, Fountain DM (eds) (1990) Exposed cross-sections of the Continental Crust, NATO ASI Series C. Kluwer Academy, Dordrecht, The Netherlands, p 317

    Google Scholar 

  • Sarkar D, Chandrakala K, Devi PP, Sridhar AR, Sain K, Reddy PR (2001) Crustal velocity structure of western Dharwar Craton, South India. J Geodyn 31:227–241

    Article  Google Scholar 

  • Sato H, Sacks IS, Murase T, Muneill G, Fukuyama H (1989) Qp melting temperature relation in peridotite at high pressure and temperature: attenuation mechanism and implications for the mechanical properties of the upper mantle. J Geophys Res 94:10647–10661

    Google Scholar 

  • Singh RN (1984) Thermal evolution of the Indian shield, and its subjacent mantle. Tectonophysics 105:413–418

    Google Scholar 

  • Singh RN (1985) Thermal structure of the Indian shield. Ind J Earth Sci 12:155–158

    Google Scholar 

  • Singh RN, Negi JG (1982) High Moho temperature in the Indian Shield. Tectonophysics 82:299–306

    Google Scholar 

  • Singh A, Mercier J-P, Ravi Kumar M, Srinagesh D, Chadha RK (2014) Continental scale body wave tomography of India: evidence for attrition and preservation of lithospheric roots. Geochem Geophys Geosyst 15:658–675

    Google Scholar 

  • Sleep NH (2003) Geodynamic implications of xenoliths geotherms. Geochem Geophys Geosyst 4:1079. https://doi.org/10.1029/2003GC000511

    Article  Google Scholar 

  • Storey M, Mahoney J (1995) Timing of hot-spot related volcanism and the break-up of Madagascar and India. Science 267:852–855

    Google Scholar 

  • Takin M (1966) An interpretation of the positive gravity anomaly over Bombay and west coast of India. Geophys J R Astron Soc 11:527–537

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Verma RK (1970) Review on heat flow studies in India. Proc. 2nd Symp. Upper Mantle Project, Hyderabad, 147–174

    Google Scholar 

  • Weaver BL, Tarney J (1984) Empirical approach to estimating the composition of the continental crust. Nature 310:575–577

    Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Google Scholar 

  • Witt-Eickschen G, Seck HA (1987) Temperature history of sheared mantle xenoliths from west Eifel, Germany: evidence for mantle diapirism beneath the Rhenish Massif. J Petrol 28:475–493

    Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dessai, A.G. (2021). Geothermal Structure. In: The Lithosphere Beneath the Indian Shield. Modern Approaches in Solid Earth Sciences, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-52942-0_5

Download citation

Publish with us

Policies and ethics