Skip to main content

Integration of Insights

  • Chapter
  • First Online:
The Lithosphere Beneath the Indian Shield

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 20))

  • 417 Accesses

Abstract

The polygenic suite of on- and off-craton mantle xenoliths from the ensemble of cratons reveals the admixed and/or interstratified nature of the depleted and fertile mantle beneath the Indian shield. Most cratons are reactivated and exhibit decoupling of the crust and mantle post-Proterozoic. The SCLM beneath exhibits accretion and reworking to varying degrees. The cratons to the south of the CITZ are older and have a more evolved crustal structure than the ones to the north. The Conrad is less prominent beneath the Bundelkhand Craton, and the lower crust has a larger component of magmatic cumulates.

A melt-depleted mantle keel, ~125–145 km thick, capped by Archaean crust distinguished the WDC until the Proterozoic. The post-Proterozoic thermotectonic episodes brought about decoupling of the crust and mantle transforming the bulk of the cratonic lithosphere. By the end of the Palaeocene, the WDC was characterised by a thermal high, an attenuated continental lithosphere (60–80 km), and a thin crust (<10–~21 km) adjacent to the then intra-cratonic Arabian Sea, resulting in the decratonisation of the WDC.

The EDC has a thinner crust (34–40 km) with a strongly depleted, relatively thick (175–190 km), partly reworked, Archaean keel consisting of sub-calcic harzburgites and eclogites. The SCLM shows compositional modification due to metasomatic re-fertilisation both laterally and in depth, and a distinct density contrast from west to east.

The Bastar Craton has the thickest crust (50–60 km) with the lithosphere thickness not more than 150 km. The SCLM is cool, highly depleted, coexists with young, fertile mantle and shows more than two episodes of lithosphere-asthenosphere interaction. The mantle beneath the SGT terrain (av. crustal thickness 40 km) is the least depleted of that beneath all the cratons. In the Aravalli and Singhbhum cratons, the Moho depths are variable from 37 to 48 km, the latter has a thin refractory SCLM. The lithosphere beneath both, the western and eastern margins of the shield, has a thin, transitional crust and variable depths of fertile, juvenile mantle that accreted coincident with the ridge jump in the Arabian Sea/Indian Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Azeez KK, Veeraswamy K, Gupta AK, Babu N, Chandrapuri S, Harinarayana T (2015) The electrical resistivity structure across the Dharwar nucleus and Coorg block of south Indian shield: evidence of collision and modified and preserved lithosphere. J Geophys R 120:6698–6721

    Google Scholar 

  • Afonso JC, Fernandez M, Ranalli G, Griffin WL, Connolly JAD (2008) Integrated geophysical-petrological modelling of the lithosphere and sublithospheric upper mantle: methodology and applications. Geochem Geophys Geosyst 9:Q05008. https://doi.org/10.1029/2007GC001834

    Article  Google Scholar 

  • Agarwal BNP, Thakur NK, Negi JG (1992) Magsat data and Curie depth below Deccan Flood Basalt (India). Pageoph 138:678–691

    Google Scholar 

  • Agrawal PK, Pandey OP (2004) Unusual lithospheric structure and evolutionary pattern of the cratonic segment of the south Indian shield. Earth Planets Space 56:139–150

    Google Scholar 

  • Amundsen HEF, Griffin WL, O’Reilly SY (1987) The lower crust and upper mantle beneath northwest Spitsbergen: evidence from xenoliths and geophysics. Tectonophysics 139:169–185

    Google Scholar 

  • Arndt NT, Goldstein SL (1989) An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics 296:1–14

    Google Scholar 

  • Artemieva IM (1989) Influence of volatiles in the upper mantle on the dynamics of thermal thinning of the lithosphere. J Geodyn 11:77–97

    Google Scholar 

  • Artemieva IM (2006) Global 1o x 1o thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416:245–277

    Google Scholar 

  • Artemieva IM (2011) The lithosphere. Cambridge University Press, Cambridge, p 773

    Google Scholar 

  • Artemieva IM, Mooney WD (2001) Thermal thickness and evolution of Precambrian lithosphere: a global study. J Geophys Res 106:16387–16414

    Google Scholar 

  • Arur MG, Bains PS, Lal J (1986) Anomaly map of Z component of the Indian subcontinent from magnetic satellite data. Proc Indian Acad Sci 94:111–115

    Google Scholar 

  • Babu EVSSK, Bhaskar Rao YJ, Mainkar D, Pastine JK, Srikant Rao R (2009) Mantle xenoliths from the Kodomali kimberlite pipe, Bastar craton, central India: evidence for decompression melting and crustal contamination in the mantle source. Geochim Cosmochim Acta Suppl 73(13):A66

    Google Scholar 

  • Baldridge WS, Keller GR, Haak V, Wendlandt E, Jirasek GR, Olsen KH (1995) The Rio Grande rift. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics, Developments in Geotectonics, vol 25. Elsevier, Amsterdam, pp 233–276

    Google Scholar 

  • Basu AR, Paul RR, Dasgupta DK, Teichman F, Poreda RJ (1993) Early and late alkali igneous pulses and a high 3He plume origin for the Deccan flood basalts. Science 261:902–906

    Google Scholar 

  • Basu AR, Battacharya AK, Paul DK (1997) Petrology and geochemistry of lamprophyric rocks from Bokaro coal field, Bihar and their economic potential. J Geol Soc India 50:255–266

    Google Scholar 

  • Battacharya SN (1992) Crustal and upper mantle velocity structure of India from surface wave dispersion. Curr Sci 62:94–100

    Google Scholar 

  • Beard AD, Downes H, Hegner E, Sablukov SM (2000) Geochemistry and mineralogy of kimberlite from the Arkhangelsk region, NW Russia: evidence for transitional kimberlite magma type. Lithos 51:47–73

    Google Scholar 

  • Bedini RM, Bodinier J-L, Dotria J-M, Morten L (1997) Evolution of LILE enriched small melt fractions in the lithospheric mantle: a case study from East African Rift. Earth Planet Sci Lett 153:67–83

    Google Scholar 

  • Begg GC, Griffin WL, Natapov LM, O’Reilly SY, Grand SP, O’Neill CJ, Hronsky JMA, Djomani YP, Swain CJ, Deen T, Bowden P (2009) The lithosphere architecture of Africa: seismic tomography, mantle petrology and tectonic evolution. Geosphere 5:23–50

    Google Scholar 

  • Bernstein S, Kelemen PB, Brooks CK (1998) Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: restites from high degree melting. Eath Planet Sci Lett 154:221–235

    Google Scholar 

  • Bird P (1978) Initiation of intracontinental subduction in the Himalayas. J Geophys Res 83:4975–4987

    Google Scholar 

  • Bird P (1979) Continental delamination and the Colorado plateau. J Geophys Res 84:7561–7571

    Google Scholar 

  • Biswas SK (1989) Hydrocarbon exploration in western off-shore basins of India. Geol Surv Pub 24:185–194

    Google Scholar 

  • Bodin T, Yuhan H, Romanowicz B (2013) Inversion of receiver functions applied to Indian craton. Geophys J Int 196:1025–1033

    Google Scholar 

  • Borah K, Rai SS, Priestley K, Gaur VK (2014a) Complex shallow mantle beneath the Dharwar craton inferred from Raleigh wave inversion. Geophys J Int 198:1055–1070

    Google Scholar 

  • Borah K, Rai SS, Prakasam KS, Gupta S, Priestley K, Gaur VK (2014b) Seismic imaging of crust beneath the Dharwar craton India from ambient noise and teleseismic receiver modeling. Geophys J Int 197:748–767

    Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    Google Scholar 

  • Boyd FR, Pearson DG, Nixon PH, Mertman S (1993) Low-Ca garnet harzburgites from southern Africa: their relations to craton structure and diamond crystallization. Contrib Mineral Petrol 113:352–366

    Google Scholar 

  • Braile LE, Keller GR, Wendlandt RF, Morgan P, Khan MA (1995) The east African rift system. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics, Developments in Geotectonics, vol 25. Elsevier, Amsterdam, pp 213–232

    Google Scholar 

  • Burke K, Dewey JF (1973) Plume generated triple junctions: key indicators in applying plate tectonics to old rocks. J Geol 81:406–433

    Google Scholar 

  • Burke K, Ashwal LD, Webb S (2003) New way to map old sutures using alkaline rocks and carbonatites. Geology 31:391–394

    Google Scholar 

  • Calvert AJ (2011) The seismic structure of the island-arc crust. In: Brown D, Ryan PD (eds) Arc-continent collision. Springer-Verlag, Berlin, pp 87–119

    Google Scholar 

  • Chalapathi Rao NV, Gibbson SA, Pyle DM, Dickin AP (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah basin and Dharwar craton, southern India. J Petrol 45:907–948

    Google Scholar 

  • Chalapathi Rao NV, Rao NVC, Lehmann B, Panwar BK, Kumar A, Mainkar D (2014) Petrogenesis of crater-facies Tokapal kimberlite pipe, Indravati basin, central India. Geosci Front 5:781–790

    Google Scholar 

  • Chalapathi Rao NV, Dongre AN, Wu FY, Lehmann B (2016) A late Cretaceous (ca. 90 Ma) kimberlite event in southern India: implications for sub-continental lithospheric mantle evolution and diamond exploration. Gondwana Res. https://doi.org/10.1016/j.gr.2015.06.006

  • Chapman DS, Furlong KP (1992) Thermal state of the continental lower crust. In: Fountain DM, Arculus RJ, Kay RW (eds) The continental crust. Elsevier, Amsterdam, pp 129–199

    Google Scholar 

  • Chevrot S, van der Hilst RD (2000) The Poisson ratio of the Australian crust: geological and geophysical implications. Earth Planet Sci Lett 183:121–132

    Google Scholar 

  • Christensen I (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101:3139–3156

    Google Scholar 

  • Christensen I, Fountain DM (1975) Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite. Geol Soc Am Bull 86:227–236

    Google Scholar 

  • Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BG (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxene and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40:133–165

    Google Scholar 

  • Cox KG (1988) Inaugural address, Proc. field workshop on Deccan flood basalt province. In: Subbarao KV (ed) Deccan flood basalts, vol 10. Geological Society of India, Memoirs, Bangalore, pp 15–22

    Google Scholar 

  • Crough ST, Thomson GA (1976) Thermal model of continental lithosphere. J Geophys Res 81:4857–4862

    Google Scholar 

  • Das R, Saikia U, Rai SS (2015) The deep geology of south India inferred from Moho depth and Vp/Vs ratio. Geophys J Int 203:910–926

    Google Scholar 

  • Deen TJ, Griffin WL, Begg G, O’Reilly SY, Natapov LM, Hronsky J (2006) Thermal and compositional structure of the lithospheric mantle: derivation from shear wave seismic tomography. Geochem Geophys Geosyst 7

    Google Scholar 

  • Dessai AG (1987) Geochemistry and petrology of xenolith bearing alkaline lamprophyres from Murud-Janjira, Raigad district. Maharashtra J Geol Soc Ind 30:61–71

    Google Scholar 

  • Dessai AG (1994) Magma fractionation and mixing in nephelinite plug associated with Deccan magmatism at Murud-Janjira, south of Bombay. J Geol Soc India 43:493–509

    Google Scholar 

  • Dessai AG (2003) Granulite xenoliths from the Western Dharwar craton: constraints on the composition of the lower continental crust. In: Mahadevan TM, Arora BR, Gupta KR (eds) Deep continental structure of India, vol 53. Geological Society of India, Memoirs, Bangalore, pp 215–231

    Google Scholar 

  • Dessai AG, Bertrand H (1995) The “Panvel Flexure” along the Western Indian continental margin: an extensional fault structure related to Deccan magmatism. Tectonophysics 241:165–178

    Google Scholar 

  • Dessai AG, Vaselli O (1999) Petrology and geochemistry of xenoliths in lamprophyres from the Deccan Traps: implications for the nature of the deep crust boundary in western India. Min Mag 63:703–722

    Google Scholar 

  • Dessai AG, Viegas AAAA (1995) Multigeneration mafic dyke swarm related to Deccan magmatism, south of Bombay: implications on the evolution of the western continental margin. In: Devaraju TC (ed) Dyke swarms of peninsular India, vol 33. Geological Society of India, Memoirs, Bangalore, pp 435–451

    Google Scholar 

  • Dessai AG, Rock NMS, Griffin BJ, Gupta D (1990) Mineralogy and petrology of some xenolith bearing alkaline dykes associated with Deccan magmatism, south of Bombay, India. Eur Mineralogist 2:667–685

    Google Scholar 

  • Dessai AG, Knight K, Vaselli O (1999) Thermal structure of the lithosphere beneath the Deccan Traps along the western Indian continental margin: evidence from xenoliths data. J Geol Soc India 54:585–598

    Google Scholar 

  • Dessai AG, Markwick A, Vaselli O, Downes H (2004) Granulite and pyroxenite xenoliths from the Deccan Trap: insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos 78:263–290

    Google Scholar 

  • Dessai AG, Peinado M, Gokarn SG, Downes H (2009) Structure of the deep crust beneath the central Indian tectonic zone: an integration of geophysical and xenolith data. Gondwana Res 17:162–170

    Google Scholar 

  • Devey CW, Stephens WE (1991) Tholeiitic dykes in the Seychelles and the original spatial extent of Deccan. J Geol Soc Lond 148:979–983

    Google Scholar 

  • Devey CW, Stephens WE (1992) Deccan related magmatism west of Seychelles-India rift. In: Alabaster BC, Pankhurst RJ (eds) Magmatism and the causes of continental break-up, vol 68. Geological Society London, Special Publication, London, pp 271–291

    Google Scholar 

  • Doin M-P, Fleitout L, Christensen UR (1997) Mantle convection and stability of depleted and undepleted continental lithosphere. J Geophys Res 102:2771–2787

    Google Scholar 

  • Dongre A, Viljoen KS, Belyani G, Le Roux P, Malandkar M (2020) Petrogenesis of the diamondiferous Pipe-8 ultramafic intrusion from the Wajrakarur kimberlite field of southern India and its relation to the worldwide Mesoproterozoic (~1.1 Ga) magmatism of kimberlite and related rocks. Geosci Front 11:793–805

    Google Scholar 

  • Drazin PG (2002) Introduction to hydrodynamic stability. Cambridge University Press, Cambridge, p 238

    Google Scholar 

  • Dupuy C, Leotard JM, Dostal J (1992) Fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochim Cosmochim Acta 56:2417–2423

    Google Scholar 

  • Durrheim RJ, Mooney WD (1991) Archaean and Proterozoic crustal evolution: evidence from crustal seismology. Geology 19:606–609

    Google Scholar 

  • Durrheim RJ, Mooney WD (1994) The evolution of the Precambrian lithosphere; seismological and geochemical constraints. J Geophys Res 99:15359–15374

    Google Scholar 

  • Eaton DW, Darbyshire F, Evans R, Grutter H (2009) The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos 109:11–22

    Google Scholar 

  • Edgar AD (1987) The genesis of alkaline magmas with emphasis on their source regions: inferences from experimental studies. Spec Publ Geol Soc Lond 30:29–52

    Google Scholar 

  • Eggler DH, Meen JK, Welt F, Dudas FO (1988) Tectonomagmatism of the Wyoming province. In: Cenozoic volcanism in the Southern Rocky Mountains Revisited: a tribute to rudy C. Apis, Part 3. Colorado School Mines Quater 83:25–40

    Google Scholar 

  • Fisk MR, Upton BG, Ford CE (1988) Geochemical and experimental study of the genesis of magmas of Reunion island, Indian Ocean. J Geophys Res 93:4933–4950

    Google Scholar 

  • Fouch MJ, Silver PG, Bell DR, Lee JN (2004) Small scale variations in seismic anisotropy near Kimberley, South Africa. Geophys J Int 157:764–774

    Google Scholar 

  • Freibouger M, Gabarty JB, Jordan TH, The Kaapvaal Seismic Group (2001) Structure of the Kaapvaal craton from surface waves. Geophys Res Lett 28:2489–2492

    Google Scholar 

  • Ganguly J, Battacharya PK (1987) Xenoliths in Proterozoic kimberlites from southern India: petrology and geophysical implications. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 249–265

    Google Scholar 

  • Gao S, Rudnick RL, Carlson RW (2002) Re-Os evidence for replacement of ancient mantle lithosphere beneath North China craton. Earth Planet Sci Lett 198:307–322

    Google Scholar 

  • Gaul OF, Griffin WL, O’Reilly SY, Pearson NJ (2000) Mapping of olivine composition in the lithospheric mantle. Earth Planet Sci Lett 182:223–235

    Google Scholar 

  • Glennie EA (1951) Density or geological correction to gravity anomalies for the Deccan Traps, India. Mont Nat Roy Aust Geophys Supplement 6:179

    Google Scholar 

  • Gokarn SG (2003) Electrical conductivity patters along transects over the Indian lithospheric domains of differing temporal evolution: a review. In: Mahadevan TM, Arora BR, Gupta KR (eds) Indian continental lithosphere, vol 53. Geological Society of India, Memoirs, Bangalore, pp 129–147

    Google Scholar 

  • Gokarn SG, Rao CK, Singh BP, Nayak PN (1992) Magnetotelluric studies across the Kurduwadi gravity feature. Phys Earth Planet Inter 72:58–67

    Google Scholar 

  • Gokarn SG, Rao CK, Gupta G, Singh BP, Yamashita M (2001) Deep crustal structure in central India using magnetotelluric studies. Int J Geophys 144:244–259

    Google Scholar 

  • Gokarn SG, Gupta G, Rao CK (2004) Geoelectric structure of the Dharwar craton from magnetotelluric studies: Archaean suture identified along the Chitradurga-Gadag schist belt. Geophys J Int 158:712–728

    Google Scholar 

  • Good ADT, Moore AC (1975) High pressure crystallization of the Ewarra, Kalka and Gosse Pile Intrusion, Giles Complex, Central Australia. Contrib Mineral Petrol 51:77–97

    Google Scholar 

  • Griffin WL, O’Reilly SY (1987) The composition of lower crust and the nature of the continental Moho-xenoliths evidence. In: Nixon PH (ed) Mantle xenolith. Wiley, New York, pp 413–430

    Google Scholar 

  • Griffin WL, O’Reilly SY (2007) Cratonic lithospheric mantle: is anything subducted? Episodes 30:43–53

    Google Scholar 

  • Griffin WL, O’Reilly SY (2018) The earliest subcontinental mantle. In: Van Kranendonk M, Bennett VC, Hoffmann JE (eds) Earth’s oldest rocks, 2. Elsevier, Amsterdam, pp 881–102

    Google Scholar 

  • Griffin WL, Carlswell DA, Nixon PH (1979) Lower crustal granulites from Lesotho, South Africa. In: Boyd FR, Meyer HOA (eds) The mantle sample: inclusions in kimberlites and other volcanics, Proceedings of the 2nd Inter. Kimberlite Conf., vol 2. American Geophysical Union, Washington, DC, pp 59–86

    Google Scholar 

  • Griffin WL, Wass SY, Hollis JD (1984) Ultramafic xenoliths from Bullenmerri and Gnotuk Maars, Victoria, Australia: petrology of a subcontinental crust–mantle transition. J Petrol 25:53–87

    Google Scholar 

  • Griffin WL, Kaminsky FV, Ryan CG, O’Reilly SY (1996) Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia. Tectonophysics 262:19–33

    Google Scholar 

  • Griffin WL, Zhang A, O’Reilly SY, Ryan CG (1998) Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower FMJ, Chung SL, Lo CH, Lee TY (eds) Mantle dynamics and plate interactions in East Asia, AGU Geodynamic Series, vol 27, pp 107–126

    Google Scholar 

  • Griffin WL, Ryan CG, Kaminsky FV, O’Reilly SY, Natapov LM, Win TT, Kinny PD, Ilupin IP (1999) The Siberian lithosphere traverse: mantle terrains and the anomaly of Siberian cratons. Tectonophysics 310:1–35

    Google Scholar 

  • Griffin WL, O’Reilly SY, Natapov LM, Ryan CG (2003) The evolution of lithospheric mantle beneath Kalahari craton and its margins. Lithos 71:215–241

    Google Scholar 

  • Griffin WL, O’Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivi K, Malkovets V, Pokhilenko N (2004) Lithosphere mapping beneath the North American Plate. Lithos 77:873–922

    Google Scholar 

  • Griffin WL, Natapov LM, O’Reilly SY, van Achterbergh E, Cherenkova AF, Cherenkov VG (2005) The Karamai kimberlite field Siberia: modification of the lithospheric mantle by the Siberian Traps event. Lithos 81:167–187

    Google Scholar 

  • Griffin WL, Kobussen AF, Babu EVSSK, O’Reilly SY, Norris R, Sen Gupta P (2009) A translithospheric suture in the vanished 1-Ga lithospheric root of south India: evidence from contrasting lithosphere sections in the Dharwar craton. Lithos 112:1109–1119

    Google Scholar 

  • Griffin WL, Belousova EA, O’Neill C, O’Reilly SY, Malkovets V, Pearson NJ, Spetsius S, Wilde SA (2014) The world turns over: Hadean-Archaean crust-mantle evolution. Lithos 189:2–15

    Google Scholar 

  • Gupta ML (1982) Heat flow in the Indian peninsula-its geological and geophysical implications. Tectonophysics 8:71–90

    Google Scholar 

  • Gupta ML, Gaur VK (1984) Surface heat flow and probable evolution of Deccan volcanism. Tectonophysics 105:309–318

    Google Scholar 

  • Gupta ML, Sharma SR, Sundar A (1991) Heat flow and heat generation in the Archaean Dharwar cratons and implications for the southern Indian shield geotherm and lithospheric thickness. Tectonophysics 194:107–122

    Google Scholar 

  • Gupta ML, Sundar A, Sharma SR, Singh SB (1993) Heat flow in the Bastar craton, central Indian shield: implications for thermal characteristics of Proterozoic cratons. Phys Earth Planet Inter 78:23–31

    Google Scholar 

  • Gupta S, Rai SS, Prakasam KS, Srinaguesh D, Chadda RK (2003a) The nature of the crust in southern India: implications for precambrian crustal evolution. Geophys Res Lett 30(8):1419. https://doi.org/10.1029/2002GL016770

    Article  Google Scholar 

  • Gupta S, Rai SS, Prakasam KS, Srinagesh D, Chadha RK, Priestly K, Gaur VK (2003b) First evidence for anomalous thick crust beneath mid-Archaean western Dharwar Craton. Curr Sci 84:1219–1226

    Google Scholar 

  • Hacker BR, Kelemen PB, Behn MD (2011) Differentiation of the continental crust by relamination. Earth Planet Sci Lett 307:501–516

    Google Scholar 

  • Hacker BR, Kelemen PB, Behn MD (2015) Continental lower crust. Annu Rev Earth Planet Sci Lett 43:167–205

    Google Scholar 

  • Hanson EC, Hickman MH, Grant NK, Newton RC (1985) Pan-African age of Peninsular Gneiss near Madurai, south India. Eos 66:419–420

    Google Scholar 

  • Harte B (1983) Mantle peridotites and processes-the kimberlite samples. In: Hakesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Natwich, pp 46–91

    Google Scholar 

  • Hayes JL, Holbrook WS, Lizzaralde D, van Avendonk HJA, Bullock AD, Mora M, Harder S, Alvarado GE, Ramirez C (2013) Crustal structure across Costa Rican volcanic arc. Geochem Geophys Geosyst 14:1087–1103

    Google Scholar 

  • Herzberg CT, Fyfe WS, Carr MJ (1983) Density constraints on the formation of the continental Moho and crust. Contrib Mineral Petrol 84:1–5

    Google Scholar 

  • Houseman GA, McKenzie DP, Molnar P (1981) Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geophys Res 86:6115–6132

    Google Scholar 

  • Iyer HM, Gaur VK, Rai SS, Ramesh DS, Rao CVR, Srinaguesh D, Suryaprakasam K (1989) High velocity anomaly beneath the Deccan volcanic province: evidence from seismic tomography. Proc Ind Acad Sci (Earth and Planetary Science) 98:31–60

    Google Scholar 

  • Jagdeesh J, Rai SS (2008) Thickness, composition, and evolution of the Indian Precambrian crust inferred from broad band seismological measurements. Precambrian Res 162:4–15

    Google Scholar 

  • James DE, Boyd FR, Schutt D, Bell DR, Carlson RW (2004) Xenolith constraints on seismic velocities in the upper mantle beneath South Africa. Geochem Geophys Geosyst 5:1–32

    Google Scholar 

  • Jayananda M, Peucat J-J (1996) Geochronological framework of southern India. Gondwana Res Group Mem 3:53–75

    Google Scholar 

  • Jones AG (1992) Electrical properties of the lower continental crust. In: Fountain DM, Arculus R, Kay RW (eds) Continental lower crust. Elsevier, The Netherlands, pp 81–144

    Google Scholar 

  • Jordan TH (1975) The continental tectosphere. Rev Geophys 13:1–12

    Google Scholar 

  • Julia J, Jagadeesh S, Rai SS, Owens TJ (2009) Deep crustal structure of the Indian shield from joint inversion of P wave receiver functions and Rayleigh wave group velocities: implications for Precambrian crustal evolution. J Geophys Res. https://doi.org/10.1029/2008JB006261

  • Kaban MK, Stolk W, Tesauro M, El Khrepy S, Al-Arifi N, Beekman F, Cloetingh SAPL (2003) 3D density model of the upper mantle of Asia based on inversion of gravity and seismic tomography data. Geochem Geophys Geosyst 17:4457–4477

    Google Scholar 

  • Kaila KL (1988) Mapping the thickness of Deccan Trap flows in India from DSS studies and inferences about a hidden Mesozoic basin in the Narmada–Tapti region. In: Subbarao KV (ed) Deccan flood basalts, vol 10. Geological Society of India, Memoirs, Bangalore, pp 91–116

    Google Scholar 

  • Kaila KL, Bhatia SC (1981) Gravity study along the Kavali-Udupi deep seismic sounding profile in the Indian peninsular shield: some inferences about the origin of anorthosites and the Eastern Ghat orogeny. Tectonophysics 79:129–143

    Google Scholar 

  • Kaila KL, Krishna VG (1992) Deep seismic sounding studies in India and major discoveries. Curr Sci 62:117–154

    Google Scholar 

  • Kaila KL, Roy Choudhury K, Reddy PR, Krishna VG, Narayan H, Subbotin SI, Sollogub VB, Chekunov TV (1979) Crustal structure along Kavali-Udupi profile in the Indian peninsular shield from deep seismic sounding. J Geol Soc Ind 20:307–333

    Google Scholar 

  • Kaila KL, Murthy PRK, Rao VK, Kharatchko GE (1981) Crustal structure from deep seismic sounding along Koyna II (Kelsi-Loni) profile in the Deccan Trap, India. Tectonophysics 73:365–384

    Google Scholar 

  • Kaila KL, Reddy PR, Dixit MM, Koteshwar Rao P (1985) Crustal structure across the Narmada-Son lineaments, central India from deep seismic soundings. J Geol Soc Ind 26:465–480

    Google Scholar 

  • Kaila KL, Tiwari HC, Krishna VG, Dixit MM, Sarkar D, Reddy MS (1990) Deep seismic sounding studies in the north Cambay and Sanchor basins. Geophys J Int 103:621–637

    Google Scholar 

  • Karmalkar NR, Duraiswami RA (2010) Ultramafic xenoliths from Kutch, Northwest India: samples of relict cratonic keel? In: Karmalkar NR, Duraiswami RA, Pawar NJ, Sivaji C (eds) Origin and evolution of the deep continental crust. Narosa Publishing House Pvt. Ltd., New Delhi, India, pp 237–260

    Google Scholar 

  • Karmalkar NR, Griffin WL, O’Reilly SY (2000) Ultramafic xenoliths from Kutch (NW India): plume related mantle samples? Int Geol Rev 42:416–444

    Google Scholar 

  • Karmalkar NR, Rege S, Griffin WL, O’Reilly SY (2005) Alkaline magmatism from Kutch, NW India: implications for plume-lithosphere interaction. Lithos 81:101–119

    Google Scholar 

  • Karmalkar NR, Duraiswami RA, Sarma PK, Chauhan SP, Jonnalgadda MK (2007) Peeping into the interior of the Western Continental Margin of India: a xenoliths-based perspective. IAGR Memoir 10:1–13

    Google Scholar 

  • Karmalkar NR, Duraiswami RA, Chalapathi Rao NV, Paul DK (2009) Mantle derived mafic-ultramafic xenoliths and the nature of Indian subcontinental lithosphere. J Geol Soc India 73:657–679. https://doi.org/10.1007/s12594-009-0051-7

    Article  Google Scholar 

  • Kay RW, Kay SM (1991) Creation and destruction of lower continental crust. Geol Rundsch 80:259–278

    Google Scholar 

  • Kelemen PB, Hangoj K, Greene A (2003) One view of the geochemistry of subduction-related magmatic arcs with an emphasis on primitive andesite and lower crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, Vol. 3: The crust, 1st edn. Elsevier Pergamon, Oxford, UK, pp 593–659

    Google Scholar 

  • Kelemen PB, Hangoj K, Green A (2014) One view of the geochemistry of subduction-related magmatic arcs with an emphasis on primitive andesite and lower crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, Vol. 3: The crust, 1st edn. Elsevier Pergamon, Oxford, UK, pp 749–806

    Google Scholar 

  • Kempton PD, Downes H, Sharkov EV, Vetrin VR, Ionov DA, Carlswell DA, Beard A (1995) Petrology and geochemistry of xenoliths from the northern Baltic shield: evidence for partial melting and metasomatism in the lower crust beneath an Archaean terrain. Lithos 36:157–184

    Google Scholar 

  • Kempton PD, Downes H, Embey-Isztin A (1997) Mafic granulite xenoliths in Neogene alkali basalts from the western Pannonian Basin: insight into the lower crust of a collapsed orogen. J Petrol 38:941–970

    Google Scholar 

  • Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81:2467–2470

    Google Scholar 

  • Kenneth BLN, Widiyantoro S (1999) A low seismic wave speed anomaly beneath northwestern India: a seismic signature of the Deccan plume? Earth Planet Sci Lett 165:145–155

    Google Scholar 

  • Kiselev S, Vinnik L, Oreshin S, Gupta S, Rai SS, Singh A, Ravi Kumar M, Mohan G (2008) Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions. Geophys J Int 173:1106–1118

    Article  Google Scholar 

  • Kopylova MG, McCaammon C (2003) Composition and the Redox State of the Slave peridotitic mantle. Proc. 8th Int. Kimberlite Conf., Victoria, BC, Canada, 2003: FLA-0195

    Google Scholar 

  • Kopylova MG, Russel JK, Cookenboo H (1999) Petrology of peridotites and pyroxenites xenoliths from the Jerico kimberlite: implications for the thermal state of the mantle beneath the Slave craton, Northern Canada. J Petrol 40:79–140

    Article  Google Scholar 

  • Kosarev GL, Oreshin SL, Vinnik LP, Kiselev SG, Dattatrayam RS, Suresh G, Baidya PR (2013) Heterogeneous lithosphere and the underlying mantle of the Indian lithosphere. Tectonophysics 282:175–186. https://doi.org/10.1016/j.tecto.2013.02.023

    Article  Google Scholar 

  • Krogstad EJ, Hanson GN, Rajamani V (1991) U-Pb ages of zircon and sphene for two gneiss terrains adjacent to the Kolar schist belt south India: evidence for separate crustal histories. J Geol 99:801–816

    Article  Google Scholar 

  • Kroner A (1977) Precambrian mobile belts of southern and eastern Africa? a case of crustal evolution towards plate tectonics. Tectonophysics 40:101–135

    Article  Google Scholar 

  • Kroner A (1981) Precambrian crustal evolution and the continental drift. Geol Rundsch 70:412–428

    Article  Google Scholar 

  • Kukonnen IT, Lahtinen R (eds) (2006) Finnish Reflection Experiment FIRE 2001–2005. Geol Surv Finland Sp Paper 43:247

    Google Scholar 

  • Kumar P, Yuan S, Ravi Kumar M, Kind R, Li CX, Chadha K (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897

    Article  Google Scholar 

  • Kumar N, Zeyen H, Singh AP, Singh B (2013) Lithospheric structure of the southern Indian shield and adjoining oceans: integrated modelling of topography, gravity, geoid and heat flow data. Geophys J Int 194:30–44

    Article  Google Scholar 

  • Kumar N, Zeyen H, Singh AP (2014) 3-D lithosphere density structure of southern Indian shield from joint inversion of gravity, geoid and topographic data. J Asian Earth Sci 89:98–107

    Google Scholar 

  • Lehmann B, Burgess R, Frei D, Belyatsky B, Mainkar D, Chalapathy Rao NV, Heaman IM (2010) Diamondiferous kimberlites in central India synchronous with Deccan Flood Basalts. Earth Planet Sci Lett 290:142–149

    Google Scholar 

  • Mahadevan TM (1994) Deep continental structure of India: a review. Geol Soc Ind Mem 28:569

    Google Scholar 

  • Mahadevan TM (2007) Lithospheric provinces and continental evolution from Indian shield. IAGR Mem 10:1–22

    Google Scholar 

  • Mahadevan TM (2008) Southern high grade domain a differentially transported Archaean lithospheric segment. Geol Surv Ind 74:89–99

    Google Scholar 

  • Mall DM, Koteshwar C, Sudhir Kumar A, Sarkar D (2012) Sub-crustal LVZ below Dharwar craton: an evidence for mantle metasomatism and tectonothermal activity in the Archaean crust. Precambrian Res 208:161–173

    Article  Google Scholar 

  • Mandal B, Vijaya Rao V, Sarkar D, Bhaskar Rao YJ, Raju S, Karuppannan P, Sen MK (2018) Deep crustal seismic reflection images from the Dharwar craton, South India-evidence for Neoarchaean subduction beneath Indian continent. Geophys J Int 212:777–794. https://doi.org/10.1002/2016JB012948

    Article  Google Scholar 

  • Manglik A, Mandal P (2016) Workshop on geodynamics of the Singhbhum craton: present status and future directions, CSIR-NGRI. Hyderabad Curr Sci 110:1144–1145

    Google Scholar 

  • Maurya S, Montagner JP, Ravi Kumar M, Stutzman E, Kiselev E, Burgess G, Purnachandra Rao N, Srinagesh D (2016) Imaging the lithospheric structure beneath the Indian continent. J Geophys Res. https://doi.org/10.1002/2016JB012948

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1983) Mantle reservoirs and ocean island basalts. Nature 301:229–231

    Article  Google Scholar 

  • Meen JK, Ayers JC, Fregeau EJ (1989) A model of mantle metasomatism by carbonated alkaline rocks: trace elements and isotopic compositions of mantle source regions of carbonatitic and other continental igneous rocks. In: Bell K (ed) Carbonatites: genesis and evolution. Unwyn Hyman, London, pp 464–499

    Google Scholar 

  • Meert JG, Pandit MK, Pradhan VR, Banks J, Sirianni R, Stroud M, Newstead B, Gifford J (2010) Precambrian crustal evolution of Peninsular India: a 3.0 billion year odyssey. J Asia Earth Sci 39:483–515

    Article  Google Scholar 

  • Meissner R (1980) Bruch- und kriechprozesse in kontinentalerkruste. Z Geol Ges 131:591–603

    Google Scholar 

  • Menzies M, Murthy VR (1980) Enriched mantle Nd and Sr isotopes in diopsides from kimberlite nodules. Nature 283:634–636

    Article  Google Scholar 

  • Mishra DC (1984a) Magnetic anomalies-India and Antarctica. Earth Planet Sci Lett 71:173–180

    Article  Google Scholar 

  • Mishra DC (1984b) Long wave length magnetic anomalies from the lithosphere, Indian shield and Himalaya. Tectonophysics 105:319–330

    Article  Google Scholar 

  • Mitchel RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New York, p 408

    Book  Google Scholar 

  • Mitra S, Priestley KF, Gaur VK, Rai SS (2006) Shear wave structure of south Indian lithosphere from Raleigh wave phase velocity measurements. Bull Seismol Soc Am. https://doi.org/10.1785/0120050116

  • Molnar P, Houseman GA, Conrad CP (1998) Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effect of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophys J Int 133:568–584

    Article  Google Scholar 

  • Mooney WD, Meissner R (1992) Multi-genetic origin of crustal reflectivity: a review of seismic reflection profiling of the continental lower crust and Moho. In: Fountain DM et al (eds) Continental lower crust. Elsevier, Amsterdam, pp 45–79

    Google Scholar 

  • Mukherjee AB, Biswas S (1988) Mantle-derived spinel lherzolite xenoliths from the Deccan Volcanic Province (India): implications for the thermal structure of the lithosphere underlying the Deccan Traps. J Volcanol Geotherm Res 35:269–276

    Article  Google Scholar 

  • Nagarjunneyulu K, Santosh M (2012) Nature and thickness of lithosphere beneath the Archaean Dharwar craton, southern India: a magnetotelluric model. J Asian Earth Sci 49:349–361

    Article  Google Scholar 

  • Naini BR, Talwani M (1982) Structural framework and evolutionary history of the continental margin of western India. Am Assoc Pet Geol Mem 34:167–191

    Google Scholar 

  • Nataf HC, Nakanishi I, Andeson DL (1984) Anisotropy and shear wave velocity heterogeneities in the upper mantle. Geophys Res Lett 11:109–112

    Article  Google Scholar 

  • Negi JG, Pandey OP, Agrawal PK (1986) Supermobility of hot Indian lithosphere. Tectonophysics 13:147–156

    Article  Google Scholar 

  • Negi JG, Agrawal PK, Pandey CP (1987) Large variation in Curie depth and lithospheric thickness beneath the Indian subcontinent and case for magnetothermometry. Geophys J R Astron Soc 88:763–775

    Article  Google Scholar 

  • Nehru CE, Reddy AK (1989) Ultramafic xenoliths from Wajrakarur kimberlite, India, In: Ross J (Managing Ed.) et al, Kimberlites and related rocks. Sp Publ Geol Soc Aust 14:745–759

    Google Scholar 

  • Newton RC (1990) The late Archaean high-grade terrain of south India and the deep structure of the Dharwar craton. In: Salisbury MH, Fountain DM (eds) Exposed cross-section of the continental crust. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 305–326

    Google Scholar 

  • Nixon PH (1987) Mantle xenoliths. Wiley, New York

    Google Scholar 

  • Norton IO, Sclater JG (1979) A model for the evolution of the Indian ocean and the break-up of the Gondwana. J Geophys Res 84:6803–6830

    Google Scholar 

  • O’Neill C, Muller D, Steinberger B (2003) Geodynamic implications of moving Indian Ocean hotspots. Earth Planet Sci Lett 251:151–168

    Google Scholar 

  • O’Neill CO, Lenardic A, Griffin WL, O’Reilly SY (2008) Dynamics of cratons in an evolving mantle. Lithos 102:12–24

    Google Scholar 

  • O’Reilly SY, Griffin WL (1985) A xenoliths derived geotherm for southeastern Australia and its geophysical implications. Tectonophysics 111:41–63

    Google Scholar 

  • O’Reilly SY, Griffin WL (2000) Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53:217–232

    Google Scholar 

  • O’Reilly SY, Griffin WL (2006) Imaging chemical and thermal heterogeneity in the sub-continental lithospheric mantle with garnets and xenoliths: geophysical implications. Tectonophysics 416:289–309

    Google Scholar 

  • O’Reilly SY, Griffin WL, Ryan CG (1991) Residence of trace elements in metasomatised spinel lherzolites xenoliths: a proton microprobe study. Contrib Mineral Petrol 109:98–113

    Google Scholar 

  • Oreshin SI, Kiselev SG, Vinnik LP, Prakasam KS, Rai SS, Maketeva I, Savvin Y (2008) Crust and mantle beneath western Himalaya, Ladakh and western Tibet from integrated seismic data. Earth Planet Sci Lett 271:76–87

    Google Scholar 

  • Oreshin SI, Vinnik LP, Kiselev SG, Rai SS, Prakasam KS, Treussov AV (2011) Deep seismic structure of the Indian shield western Himalaya, Ladakh and Tibet. Earth Planet Sci Lett 307:415–419

    Google Scholar 

  • Pandey OP, Agrawal PK (1999) Lithospheric mantle deformation beneath the Indian cratons. J Geol 107:683–692

    Google Scholar 

  • Pandey A, Pandey DK (2015) Mechanism of crustal extension in the Laxmi Basin, Arabian Sea. Geodesy Geodynam 6:409–422

    Google Scholar 

  • Pandey R, Chalapathi Rao NV, Belyansky B, Choudhary AK, Lehmann B, Pandit D, Dhote P (2019) Petrogenesis of end-Cretaceous/Early Eocene lamprophyres from the Deccan Large Igneous Province: constraints on plume-lithosphere interaction and the post-Deccan lithosphere-asthenosphere boundary (LAB) beneath NW India. Lithos 346-347(2019):105139

    Google Scholar 

  • Parks B, Chin EJ, Saal A, Hirth G, Hearn G, Boudinier J-L (2017) Deciphering the composition and structure of Wyoming craton mantle lithosphere: insights from peridotite xenoliths. 11th Kimberlite Conference extended abstract 11IKC-4631, 1–3.

    Google Scholar 

  • Peng ZX, Mahoney JJ (1995) Drillhole lavas from the northwestern Deccan Traps and the evolution of the Reunion hotspot mantle. Earth Planet Sci Lett 134:169–185

    Google Scholar 

  • Pollock CH, Chapman DH (1977) On the regional variation of heat flow, geotherms and the thickness of the lithosphere. Tectonophysics 38:279–296

    Google Scholar 

  • Priestley KZ, McKenzie MC (2006) Thermal structure of the lithosphere from shear wave velocity. Earth Planet Sci Lett 244:285–301

    Google Scholar 

  • Priestley KZ, Jackson J, McKenzie MC (2008) Lithospheric structure and deep earthquakes beneath India. The Himalaya and southern Tibet. Geophys J Int 172:354–362

    Google Scholar 

  • Qureshy MN (1981) Gravity anomalies, isostasy and crust mantle relations in the Deccan Traps and contiguous regions, India. In: Subbarao KV, Sukeshwala RN (eds) Deccan volcanism and related basalt provinces in other parts of the World, vol 3. Geological Society of India, Memoirs, Bangalore, pp 184–197

    Google Scholar 

  • Rai SS, Vijay Kumar T, Jagdeesh S (2005) Seismic evidence for significant crustal thickening beneath Jabalpur earthquake, 21st May, 1997 source region in Narmada-Son lineament, central India. Geophys Res Lett 32:L2306. https://doi.org/10.1029/2005GL023580

    Article  Google Scholar 

  • Rai A, Gaur VK, Rai SS, Priestley K (2009) Seismic signatures of the Pan-African orogeny: implications for the southern Indian high grade terrains. Geophys J Int 176:518–528

    Google Scholar 

  • Raith MM, Brandt S, Sengupta P, Berndt J, John T, Srikantappa C (2016) Element mobility and behaviour of zircon during HT metasomatism of ferroan basic granulite at Ayyarmalai, South India: evidence for polyphase Neoarchaean crustal growth and multiple metamorphism in the northeastern Madurai province. J Petrol 57:1729–1774

    Google Scholar 

  • Ramesh DS, Bianchi MB, Sharma SD (2010) Images of possible fossil collision structures beneath the Eastern Ghats belt, India from P and S receiver functions. Lithosphere 22:84–92

    Google Scholar 

  • Raval UL, Veerswamy K (1996) Densification in the deep crust: a consequence of the passage of Indian lithosphere over the Reunion Plume. Gondwana Geol Mag Spec 2:393–404

    Google Scholar 

  • Ravi Kumar M, Saul J, Sarkar D, Kind R, Shukla AK (2001) Crustal structure of the Indian shield: new constraints from teleseismic receiver functions. Geophys Res Lett 28:1339–1342

    Google Scholar 

  • Ray L, Kumar PS, Reddy GK, Roy S, Rao GV, Srinivsan R, Rao RUM (2003) High mantle heat flow in a Precambrian granulite province: evidence from southern India. J Geophys Res 108(B2):2084

    Google Scholar 

  • Reddy PR, Murthy PRK, Rao IBP, Mall DM, Koteshwar Rao P (2000) Coincident deep seismic reflection and refraction profiling Central India. In: Verma OP, Mahadevan TM (eds) Research highlights in earth system sciences, Department of Science and Technology Sp, vol 1, pp 49–53

    Google Scholar 

  • Reddy PR, Rajendra Prasad B, Vijaya Rao V, Saini K, Khare P, Reddy MS (2003) Deep seismic reflection and refraction/wide angle reflection studies along Kuppam-Palani transect in the Southern Granulite Terrain in India. Geol Soc Ind Mem 50:79–106

    Google Scholar 

  • Replumaz A, Karason H, van der Hilst RD, Bess J, Tapponier P (2004) 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth Planet Sci Lett 221:103–115

    Google Scholar 

  • Reychert CA, Shearer PM (2009) A global view of the lithosphere-asthenosphere boundary. Science 324:495–498

    Google Scholar 

  • Richardson SH, Gurney JJ, Erlank AJ, Harris JW (1984) Origin of diamonds in old enriched mantle. Nature 310:198–202

    Google Scholar 

  • Ringwood AE, Green DH (1966) An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics 3:383–427

    Google Scholar 

  • Rivalenti G, Garuti G, Rossi A, Siena F, Sinigoi S (1981) Existence of different peridotite types and of a layered igneous complex in the Ivrea Zone of the Western Alps. J Petrol 22:127–153

    Google Scholar 

  • Roy S, Mareschal J-C (2011) Constraints on the deep thermal structure of the Dharwar craton, India, from heat flow, shear wave velocities and mantle xenoliths. J Geophys Res 116:B02409. https://doi.org/10.1029/2010JB007796

    Article  Google Scholar 

  • Roy S, Rao RUM (2000) Heat flow in the Indian shield. J Geophys Res 105:25587–25604

    Google Scholar 

  • Rudnick RL (1992) Xenolith-samples of the lower continental crust. In: Fountain DM, Arculus RJ, Kay RW (eds) The continental crust. Elsevier, Amsterdam, pp 269–316

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 3: The crust, 1st edn. Elsevier-Pergamon, Oxford, UK, pp 1–64

    Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 3: The crust, 2nd edn. Elsevier-Pergamon, Oxford, UK, pp 1–51

    Google Scholar 

  • Rudnick RL, Nyblade AA (1999) The thickness and heat production of Archaean lithosphere: constraints from xenolith thermobarometry and surface heat flow. In: Frei Y, Bertka M, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation, A tribute to Francis R. Boyd, vol 6. The Chemical Society Special Publication, New York, pp 3–12

    Google Scholar 

  • Rudnick RL, McDonough WF, Chapell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrography and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Google Scholar 

  • Rudnick RL, McDonough WF, Orpin A (1994) Northern Tanzanian peridotite xenoliths: a comparison with Kaapvaal peridotites and inferences on metasomatic interactions. In: Meyer HOA, Eonardo OH (eds) Proc. 5th Int. Kimberlite Conference, 1st edn. Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, pp 336–353

    Google Scholar 

  • Rudnick RL, McDonough WF, O’Connel RJ (1998) Thermal structure, thickness and composition of continental lithosphere. Chem Geol 145:395–411

    Google Scholar 

  • Ryan CG, Griffin WI, Pearson NG (1996) Garnet geotherm: a technique for the derivation of P-T data from Cr-pyrope garnets. J Geophys Res 101:5611–5625

    Google Scholar 

  • Sachtleben T, Seck HA (1981) Chemical control of Al-solubility in orthopyroxene and its implications on pyroxene geothermometry. Contrib Mineral Petrol 78:157–165

    Google Scholar 

  • Sarkar DK, Chandrakala P, Devi P, Sridhar AR, Sain K, Reddy PR (2001) Crustal velocity structure of western Dharwar craton south India. J Geodyn 31:227–241. https://doi.org/10.1016/S0264-3707(00)00021-751

    Article  Google Scholar 

  • Schmidberger SS, Francis D (1999) Nature of the mantle roots beneath the north American craton: mantle xenolith evidence from Somerset Island kimberlites. Lithos Special Issue 48:195–216

    Google Scholar 

  • Scott-Smith BH (1989) Lamproites and kimberlites in India. Neues Jahrbuch Miner Abh 161:443–465

    Google Scholar 

  • Shalivahan SS, Bhattacharya BB, Chalapathi Rao NV, Maurya VP (2014) Thin lithosphere-asthenosphere boundary beneath eastern Indian craton. Tectonophysics 612–613:128–133

    Google Scholar 

  • Sharma SD, Ramesh DS (2013) Imaging mantle lithosphere for diamond prospecting in southeast India. Lithosphere 5:331–342

    Google Scholar 

  • Shervais JW (1979) Thermal emplacement model for the Alpine lherzolite massif at Balmuccia, Italy. J Petrol 20:795–820

    Google Scholar 

  • Simonetti A, Goldstein SL, Schmidberger SS, Viladkar SG (1998) Geochemical and Nd, Pb, and Sr isotope data from Deccan alkaline complexes-inferences for mantle sources and plume-lithosphere interaction. J Petrol 39:1847–1864

    Google Scholar 

  • Singh BP, Arora BR, Gokarn SG (1989) Deep continental studies through geoelectromagnetism. Department of Science and Technology Report (unpublished), Govt. of India, 1–10

    Google Scholar 

  • Singh A, Mercier J-P, Ravi Kumar M, Srinagesh D, Chadha RK (2014) Continental scale body wave tomography of India: evidence for attrition and preservation of lithospheric roots. Geochem Geophys Geosyst 15:658–675

    Google Scholar 

  • Sleep N (1994) Lithospheric thinning by midplate mantle plumes and the thermal history of hot plume material ponded at sublithospheric depths. J Geophys Res 99:9327–9343

    Google Scholar 

  • Srinaguesh D, Rai SS (1996) Teleseismic tomographic evidence for contrasting crust and upper mantles in south Indian Archaean terrains. Phys Earth Planet Inter 97:27–41

    Google Scholar 

  • Srinivas Rao G, Radhakrishna M, Sreejit KM, Krishma KS, Bull JM (2014) Lithosphere structure and upper mantle characteristics below the Bay of Bengal. Geophys J Int 206:675–695

    Google Scholar 

  • Stein CA, Hoffman AW (1994) Mantle plumes and episodic crustal growth. Nature 372:63–68

    Google Scholar 

  • Storey M, Mahoney J (1995) Timing of hot-spot related volcanism and the break-up of Madagascar and India. Science 267:852–855

    Google Scholar 

  • Sun SS (1980) Lead isotopic study of young volcanic rocks of mid-ocean ridges, oceanic islands and island arcs. Phil Trans Roy Soc Lond 297:509–523

    Google Scholar 

  • Tainton KM, McKenzie D (1994) The generation of kimberlite, lamproite and their source rocks. J Petrol 35:787–817

    Google Scholar 

  • Takin M (1966) An interpretation of the positive gravity anomaly over Bombay and West coast of India. Geophys J R Astron Soc 11:527–537

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Tewari HC, Murthy ASN, Kumar P, Sridhar AR (2001) A tectonic model of the Narmada region. Curr Sci 80:873–878

    Google Scholar 

  • van Avendock HJ, Holbrook WS, Nunes GT, Shillington DJ, Tucholke BE, Louden KE, Larsen HC, Hooper JR (2005) Seismic velocity structure of New Found land rifted margin: evidence for thinned continental crust. EOS (Tras Amer Geophys Union) 86:Abstract T43B-1389

    Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Google Scholar 

  • Watson EB (1980) Apatite and Phosphorous in the mantle source region: an experimental study of apatite/rock equilibria at pressures to 25 kbars. Earth Planet Sci Lett 51:322–335

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Google Scholar 

  • Wilshire HG (1984) Mantle metasomatism: the REE story. Geology 12:395–398

    Google Scholar 

  • Witt-Eickschen G, Seck HA (1987) Temperature history of sheared mantle xenoliths from west Eifel, Germany: evidence for mantle diapirism beneath the Rhenish Massif. J Petrol 28:475–493

    Google Scholar 

  • Xu YS, Shankland TJ, Duba AG (2000) Pressure effect on electrical conductivity of the earth’s mantle. J Geophys Res 105:27865–27875

    Google Scholar 

  • Xu X, Griffin WL, O’Reilly SY, Pearson NJ, Geng H, Zheng JP (2008) Re-Os isotopes in mantle xenoliths from eastern China: age constraints and evolution of lithospheric mantle. Lithos 102:49–64

    Google Scholar 

  • Zandt G, Ammon CJ (1995) Continental crust composition constrained by measurement of crustal Poisson’s ratio. Nature 374:152–154

    Google Scholar 

  • Zhang M, Stephenson PJ, O’Reilly SY, McCulloch MT, Norman M (2001) Petrology and geodynamic implications of late Cenozoic basalts in North Queensland, Australia: trace element and Sr-Nd-Pb isotope evidence. J Petrol 42:685–719

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dessai, A.G. (2021). Integration of Insights. In: The Lithosphere Beneath the Indian Shield. Modern Approaches in Solid Earth Sciences, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-52942-0_6

Download citation

Publish with us

Policies and ethics