Skip to main content

Analysis of Local Reactive Power Provision Using PV in Distribution Systems

  • Chapter
  • First Online:
Reactive Power Support Using Photovoltaic Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 425 Accesses

Abstract

Approximately 50% of global PV installations have occurred at the distribution level by the end of 2015 [1]. And in many countries, the share of distributed PV systems can go much higher, e.g. 80% of the PV capacity in Germany and nearly all of PV capacity in Italy and Australia [2, 3]. By having the solar power generation close to where the load is consumed, transmission losses can be significantly reduced [4], voltage improved, and congestion of the lines avoided [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(P_{i,t}^{\text {PV}}\) and \(P_{j,t}^{\text {PV}}\) are different from \(P_{x,t}^{\text {PV}}\), in the sense that the former two quantities are concerned with the PV generation at some particular nodes i and j (which may or may not have PV), whereas the latter is concerned with the generation of the xth PV. Similar notations are also used for \(Q^{\text {PV}}\). As is the case throughout the thesis, i and j are indices reserved for nodes in a system, whereas x is the index for PV and other DERs.

  2. 2.

    PV penetration is defined here as the ratio of the total active power generated by PV systems to the total active power demand in the same period.

References

  1. International Energy Agency (IEA) (2018) Trends in photovoltaic applications 2018. ISBN 9783906042794

    Google Scholar 

  2. Porter K, Fink S, Rogers J, Mudd C, Buckley M, Clark C, Hinkle G (2012) PJM renewable integration study: review of industry practice and experience in the integration of wind and solar generation. GE Energy Tech Rep

    Google Scholar 

  3. Ogimoto K (2014) Power system operation and augmentation planning with PV integration. International Energy Agency Photovoltaic Power Systems Programme (IEA PVPS), Tokyo. Tech Rep T14–04:2014

    Google Scholar 

  4. Atwa YM, El-Saadany EF, Salama MMA, Seethapathy R (2010) Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans Power Syst 25(1):360–370, ISSN 08858950. https://doi.org/10.1109/TPWRS.2009.2030276

  5. Ziadi Z, Taira S, Oshiro M, Funabashi T (2014) Optimal power scheduling for smart grids considering controllable loads and high penetration of photovoltaic generation. IEEE Trans Smart Grid 5(5):2350–2359, ISSN 19493053. https://doi.org/10.1109/TSG.2014.2323969

  6. Wandhare RG, Agarwal V (2014) Reactive power capacity enhancement of a PV grid system to increase pv penetration level in smart grid scenario. IEEE Trans Smart Grid 5(4):1845–1854, ISSN 19493053. https://doi.org/10.1109/TSG.2014.2298532

  7. Wu L, Zhao Z, Liu J (2007) A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactive power compensation. IEEE Trans Energy Convers 22(4):881–886, ISSN 08858969. https://doi.org/10.1109/TEC.2007.895461arXiv: z0024

  8. Cagnano A, De Tuglie E, Liserre M, Mastromauro RA (2011) Online optimal reactive power control strategy of PV inverters. IEEE Trans Ind Electron 58(10):4549–4558, ISSN 0278-0046. https://doi.org/10.1109/TIE.2011.2116757

  9. Kisacikoglu MC, Ozpineci B, Tolbert LM (2010) Examination of a PHEV bidirectional charger system for v2g reactive power compensation. In: Proceedings of conference on–IEEE applied power electronics conference and exposition–APEC, pp 458–465, ISSN 1048-2334. https://doi.org/10.1109/APEC.2010.5433629

  10. Southern California Edison. (2017) Electric rule 21

    Google Scholar 

  11. IEEE Standards Coordinating Committee 21 (2018) IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces, New York. IEEE. ISBN 9781504446396

    Google Scholar 

  12. Kumar DS, Gandhi O, Rodríguez-Gallegos CD, Srinivasan D (2020) Review of power system impacts at high PV penetration part ii: potential solutions and the way forward. Solar Energy Under Second Rev

    Google Scholar 

  13. Bhattacharya K, Zhong J (2001) Reactive power as an ancillary service. IEEE Trans Power Syst 16(2):294–300

    Google Scholar 

  14. Zhong J, Nobile E, Bose A, Bhattacharya K (2004) Localized reactive power markets using the concept of voltage control areas. IEEE Trans Power Syst 19(3):1555–1561

    Google Scholar 

  15. Zhong J (2005) A pricing mechanism for reactive power devices in competitive market. In: 2006 IEEE power india conference, vol 2005, IEEE, pp 67–72, ISBN 0-7803-9525-5. https://doi.org/10.1109/POWERI.2006.1632493

  16. Kargarian A, Raoofat M, Mohammadi M (2011) Reactive power market management considering voltage control area reserve and system security. Appl Energy 88(11):3832–3840, ISSN 03062619. https://doi.org/10.1016/j.apenergy.2011.04.024

  17. El-samahy I, Bhattacharya K, Cañizares C, Anjos MF, Pan J (2007) A procurement market model for reactive power services considering system security. IEEE Trans Power Syst 1–13

    Google Scholar 

  18. Reddy S, Abhyankar AR, Bijwe PR (2011) Reactive power price clearing using multi-objective optimization. Energy 36(5):3579–3589, ISSN 03605442. https://doi.org/10.1016/j.energy.2011.03.070

  19. Rabiee A, Shayanfar H, Amjady N (2009) Coupled energy and reactive power market clearing considering power system security. Energy Convers Manag 50(4):907–915, ISSN 01968904. https://doi.org/10.1016/j.enconman.2008.12.026

  20. Samimi A, Kazemi A, Siano P (2015) Economic-environmental active and reactive power scheduling of modern distribution systems in presence of wind generations: a distribution market-based approach. Energy Convers Manage 106:495–509, ISSN 01968904. https://doi.org/10.1016/j.enconman.2015.09.070

  21. Gabash A, Li P (2012) Active-reactive optimal power flow in distribution networks with embedded generation and battery storage. IEEE Trans Power Syst 27(4):2026–2035, ISSN 08858950. https://doi.org/10.1109/TPWRS.2012.2187315.arXiv: 9605103 [cs]

  22. Liang RH, Wang JC, Chen YT, Tseng WT (2015) An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration. Int J Electr Power Energy Syst 64:1088–1097, ISSN 01420615. https://doi.org/10.1016/j.ijepes.2014.09.008

  23. Sousa T, Morais H, Vale Z, Castro R (2015) A multi-objective optimization of the active and reactive resource scheduling at a distribution level in a smart grid context. Energy 85:236–250, ISSN 03605442. https://doi.org/10.1016/j.energy.2015.03.077

  24. Gandhi O, Zhang W, Rodríguez-Gallegos CD, Srinivasan D, Reindl T (2016) Continuous optimization of reactive power from PV and EV in distribution system. In: 2016 IEEE Innovative Smart Grid Technologies–Asia (ISGT-Asia), Melbourne, Nov. 2016. IEEE, pp 281–287. ISBN 978-1-5090-4303-3. https://doi.org/10.1109/ISGT-Asia.2016.7796399

  25. Gandhi O, Srinivasan D, Rodríguez-Gallegos CD, Reindl T (2017) Competitiveness of reactive power compensation using PV inverter in distribution system. In: 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Torino, Italy. Sep. 2017. IEEE, pp 1–6. ISBN 978-1-5386-1953-7. https://doi.org/10.1109/ISGTEurope.2017.8260238

  26. Gandhi O, Rodríguez-Gallegos CD, Zhang W, Srinivasan D, Reindl T (2018) Economic and technical analysis of reactive power provision from distributed energy resources in microgrids. Appl Energy 210:827–841, ISSN 03062619. https://doi.org/10.1016/j.apenergy.2017.08.154

  27. Ghosh S, Das D (1999) Method for load-flow solution of radial distribution networks. IEE Proc Gener Transm Distrib 146(6):641–648, ISSN 13502360. https://doi.org/10.1049/ip-gtd:19990464

  28. Skoplaki E, Palyvos JA (2009) On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Solar Energy 83(5):614–624, ISSN 0038092X. https://doi.org/10.1016/j.solener.2008.10.008

  29. Rodríguez-Gallegos CD, Gandhi O, Yang D, Alvarez-Alvarado MS, Zhang W, Reindl T, Panda SK (2018) A siting and sizing optimization approach for pv-battery-diesel hybrid systems. IEEE Trans Ind Appl 54(3):2637–2645, ISSN 0093-9994. https://doi.org/10.1109/TIA.2017.2787680

  30. Li C, Disfani VR, Pecenak ZK, Mohajeryami S, Kleissl J (2018) Optimal OLTC voltage control scheme to enable high solar penetrations. Electr Power Syst Res 160:318–326. https://doi.org/10.1016/J.EPSR.2018.02.016. arXiv: arXiv:1804.06025v1

  31. Braun M (2008) Provision of ancillary services by distributed generators, Ph.D Thesis, Kassel University, p 273, ISBN 9783899586381

    Google Scholar 

  32. Savier JS, Das D (2007) Impact of network reconfiguration on loss allocation of radial distribution systems. IEEE Trans Power Delivery 22(4):2473–2480, ISSN 08858977. https://doi.org/10.1109/TPWRD.2007.905370

  33. Energy Market Authority (2018) Singapore half-hourly system demand data. https://www.ema.gov.sg/statistic.aspx?sta%7B%5C_%7Dsid=20140826Y84sgBebjwKV Visited on 07/10/2017

  34. EMC, Energy market price information. https://www.emcsg.com/marketdata/priceinformation Visited on 04/01/2018

  35. EMC (2016) Use of system charges. https://www.mypower.com.sg/documents/ts-usc.pdf Visited on 04/01/2018

  36. Bieri M, Winter K, Tay S, Chua A, Reindl T (2017) An irradiance-neutral view on the competitiveness of life-cycle cost of PV rooftop systems across cities. Energy Procedia

    Google Scholar 

  37. National Solar Repository, Solar economics handbook. http://www.solar-repository.sg/pv-adoption-in-singapore Visited on 05/02/2017

  38. Chen SX, Eddy YSF, Gooi HB, Wang MQ, Lu SF (2015) A centralized reactive power compensation system for LV distribution networks. IEEE Trans Power Syst 30(1):274–284, ISSN 08858950. https://doi.org/10.1109/TPWRS.2014.2326520

  39. Verbois H, Rusydi A, Thiery A (2018) Probabilistic forecasting of day-ahead solar irradiance using quantile gradient boosting. Solar Energy 173(March):313–327, ISSN 0038-092X. https://doi.org/10.1016/j.solener.2018.07.071

  40. Verbois H, Huva R, Rusydi A, Walsh W (2018) Solar irradiance forecasting in the tropics using numerical weather prediction and statistical learning. Solar Energy 162 no. December 2017:265–277, ISSN 0038-092X. https://doi.org/10.1016/j.solener.2018.01.007

  41. Zheng W, Wu W, Zhang B, Sun H, Liu Y (2016) A fully distributed reactive power optimization and control method for active distribution networks. IEEE Trans Smart Grid 7(2):1021–1033, ISSN 19493053. https://doi.org/10.1109/TSG.2015.2396493

  42. Lavaei J, Member S, Low SH (2012) Zero duality gap in optimal power flow problem. 27(1):92–107

    Google Scholar 

  43. Takeuchi A, Hayashi T, Nozaki Y, Shimakage T (2012) Optimal scheduling using metaheuristics for energy networks. IEEE Trans Smart Grid 3(2):968–974, ISSN 19493053. https://doi.org/10.1109/TSG.2012.2191580

  44. Low SH (2014) Convex relaxation of optimal power flow part ii: exactness. IEEE Trans Control Network Syst 1(2):177–189, ISSN 2325-5870. https://doi.org/10.1109/TCNS.2014.2323634.arXiv: 1405.0814. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6815671

  45. Chang GW, Chu SY, Wang HL (2007) An improved backward/forward sweep load flow algorithm for radial distribution systems. IEEE Trans Power Syst 22(2):882–884, ISSN 08858950. https://doi.org/10.1109/TPWRS.2007.894848

  46. Chelouah R, Siarry P (2000) A continuous genetic algorithm designed for the global optimization of multimodal functions. J Heuristics 6:191–213

    Google Scholar 

  47. Sivanandam S, Deepa S (2008) Introduction to genetic algorithms. Springer, p 453, ISBN 9783540731894. https://doi.org/10.1007/978-3-540-73190-0

  48. Gandhi O, Rodríguez-Gallegos CD, Srinivasan D (2016) Review of optimization of power dispatch in renewable energy system. In: 2016 IEEE Innovative Smart Grid Technologies–Asia (ISGT-Asia), Melbourne. Nov. 2016, IEEE. pp 250–257. ISBN 978-1-5090-4303-3. https://doi.org/10.1109/ISGT-Asia.2016.7796394

  49. Logenthiran T, Srinivasan D, Shun TZ (2012) Demand side management in smart grid using heuristic optimization. IEEE Trans Smart Grid 3(3):1244–1252, ISSN 19493053. https://doi.org/10.1109/TSG.2012.2195686

  50. Savic A, Durišic Ž (2014) Optimal sizing and location of SVC devices for improvement of voltage profile in distribution network with dispersed photovoltaic and wind power plants. Appl Energy 134:114–124, ISSN 03062619. https://doi.org/10.1016/j.apenergy.2014.08.014

  51. Gandhi O, Kumar DS, Rodríguez-Gallegos CD, Srinivasan D (2020) Review of power system impacts at high PV penetration part i: factors limiting pv penetration. Solar Energy

    Google Scholar 

  52. Sode-Yome A, Mithulananthan N (2004) Comparison of shunt capacitor, SVC and STATCOM in static voltage stability margin enhancement. Int J Electr Eng Educ 41(2):158–171, ISSN 0020-7209. https://doi.org/10.7227/IJEEE.41.2.7

  53. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197, ISSN 1089778X. https://doi.org/10.1109/4235.996017

  54. Pires DF, Antunes CH, Martins AG (2012) NSGA-II with local search for a multi-objective reactive power compensation problem. Int J Electr Power Energy Syst 43(1):313–324, ISSN 01420615. https://doi.org/10.1016/j.ijepes.2012.05.024

  55. Rodríguez-Gallegos CD, Singh JP, Yacob Ali JM, Gandhi O, Nalluri S, Kumar A, Shanmugam V, Aguilar ML, Bieri M, Reindl T, Panda SK (2019) PV-GO: a multiobjective and robust optimization approach for the grid metallization design of Si-based solar cells and modules. Prog Photovoltaics Res Appl 27(2):113–135, ISSN 10627995. https://doi.org/10.1002/pip.3036

  56. Araújo SV, Zacharias P, Mallwitz R (2010) Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems. IEEE Trans Ind Electr 57(9):3118–3128, ISSN 02780046. https://doi.org/10.1109/TIE.2009.2037654

  57. Growatt New Energy Technology Co. Ltd (2019) 3 phase inverters datasheet, Shenzhen. http://www.ginverter.com/upload/file/contents/2019/06/5d0344b5ef461.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktoviano Gandhi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gandhi, O. (2021). Analysis of Local Reactive Power Provision Using PV in Distribution Systems. In: Reactive Power Support Using Photovoltaic Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-61251-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61251-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61250-4

  • Online ISBN: 978-3-030-61251-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics