Skip to main content

Reactive Power Dispatch for Large Number of PV Installations

  • Chapter
  • First Online:
Reactive Power Support Using Photovoltaic Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 439 Accesses

Abstract

The reactive power controls proposed in the literature can be categorised into three types: centralised, distributed, and local control. The classification of decentralised control in [1], defined as “intermediate state between centralised and distributed control” shall be classified as distributed control for the remainder of this work as both distributed and decentralised controls in [1] require some forms of communication. It is also noted that there are other definitions of distributed and decentralised which assume no communication [2], but those controls are defined as local in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(V_{x}\) is the voltage at the node where the xth PV is located. Perhaps the notation \(V_{i_{x}}\) is more suitable, but \(V_{x}\) has been adopted for simplicity.

  2. 2.

    \(P_{i}^{\text {PV}}\) and \(P_{j}^{\text {PV}}\) are different from \(P_{x}^{\text {PV}}\), in the sense that the former two quantities are concerned with the PV generation at some particular nodes i and j (which may or may not have PV), whereas the latter is concerned with the generation of the xth PV. Similar notations are also used for \(Q^{\text {PV}}\). As is the case throughout the thesis, i and j are indices reserved for nodes in a system, whereas x is the index for PV and other DERs.

  3. 3.

    MASDS even performed better than LOGO at certain periods in 69-bus system, as shown in Fig. 5.14a.

  4. 4.

    It might be counterintuitive for a constant PF control to have any oscillation since the PV reactive power outputs are supposed to be constant with constant irradiance. The oscillations result from the constant shift in the sign of (\(\left| V_{x,t}^{\text {meas}}\right| -V_{\text {ref}}\)), which also changes the sign of \(Q_{x,t}^{\text {PV}}\).

References

  1. Antoniadou-Plytaria KE, Kouveliotis-Lysikatos IN, Georgilakis PS, Hatziargyriou ND (2017) Distributed and decentralized voltage control of smart distribution networks : models, methods, and future research. IEEE Trans Smart Grid 8(6):2999–3008. ISSN: 1949-3053. https://doi.org/10.1109/TSG.2017.2679238

  2. Jahangiri P, Aliprantis DC (2013) Distributed volt/var control by pv inverters. IEEE Trans Power Syst 28(3):3429–3439. ISSN: 08858950. https://doi.org/10.1109/TPWRS.2013.2256375

  3. Gandhi O, Rodríguez-Gallegos CD, Zhang W, Srinivasan D, Reindl T (2018) Economic and technical analysis of reactive power provision from distributed energy resources in microgrids, Appl Energy 210:827–841. ISSN: 03062619. https://doi.org/10.1016/j.apenergy.2017.08.154

  4. Gandhi O, Zhang W, Rodríguez-Gallegos CD, Srinivasan D, Reindl T (2016) Continuous optimization of reactive power from pv and ev in distribution system. In: 2016 IEEE innovative smart grid technologies—Asia (ISGT-Asia). IEEE, Melbourne, November 2016, pp 281–287. ISBN: 978-1-5090-4303-3. https://doi.org/10.1109/ISGT-Asia.2016.7796399

  5. Gandhi O, Srinivasan D, Rodríguez-Gallegos CD, Reindl T (2017) Competitiveness of reactive power compensation using pv inverter in distribution system. In: 2017 IEEE PES innovative smart grid technologies conference Europe (ISGT-Europe), Torino. IEEE, Italy, September 2017, pp 1–6. ISBN: 978-1- 5386-1953-7. https://doi.org/10.1109/ISGTEurope.2017.8260238

  6. Gandhi O, Zhang W, Rodríguez-Gallegos CD, Bieri M, Reindl T, Srinivasan D (2018) Analytical approach to reactive power dispatch and energy arbitrage in distribution systems with ders. In: IEEE Trans Power Syst 178 Bibliography 33(6):6522–6533. ISSN: 0885-8950. https://doi.org/10.1109/TPWRS.2018.2829527

  7. Gandhi O, Rodríguez-Gallegos CD, Gorla NBY, Bieri M, Reindl T, Srinivasan D (2019) Reactive power cost from pv inverters considering inverter lifetime assessment. IEEE Trans Sustain Energy 10(2):738–747. ISSN: 1949-3029. https://doi.org/10.1109/TSTE.2018.2846544

  8. Gandhi O, Rodríguez-Gallegos CD, Reindl T, Srinivasan D (2018) Competitiveness of pv inverter as a reactive power compensator considering inverter lifetime reduction. Energy Proc 150:74–82. ISSN: 18766102. https://doi.org/10.1016/j.egypro.2018.09.005

  9. Ziadi Z, Taira S, Oshiro M, Funabashi T (2014) Optimal power scheduling for smart grids considering controllable loads and high penetration of photovoltaic generation. IEEE Trans Smart Grid 5(5):2350–2359. ISSN: 19493053. https://doi.org/10.1109/TSG.2014.2323969

  10. Ziadi Z, Taira S, Oshiro M, Funabashi T (2014) Optimal power scheduling for smart grids considering controllable loads and high penetration of photovoltaic generation. IEEE Trans Smart Grid 5(5):2350–2359. ISSN: 19493053. https://doi.org/10.1109/TSG.2014.2323969

  11. Zare M, Niknam T, Azizipanah-Abarghooee R, Amiri B (2014) Multi-objective probabilistic reactive power and voltage control with wind site correlations. Energy 66:810–822. ISSN: 03605442. https://doi.org/10.1016/j.energy2014.01.034

  12. Rahbar K, Xu J, Zhang R (2015) Real-time energy storage management for renewable integration in microgrid: an off-line optimization approach. IEEE Trans Smart Grid 6(1):124–134. ISSN: 1949-3053. https://doi.org/10.1109/TSG.2014.2359004

  13. Wang R, Wang P, Xiao G (2015) A robust optimization approach for energy generation scheduling in microgrids. Energy Convers Manag 106:597–607. ISSN: 01968904. https://doi.org/10.1016/j.enconman.2015.09.066

  14. Elsied M, Oukaour A, Gualous H, Hassan R Energy management and optimization in microgrid system based on green energy. Energy 84:139–151 (2015). ISSN: 03605442. https://doi.org/10.1016/j.energy.2015.02.108

  15. Yang HT, Liao JT (2015) MF-apso-based multiobjective optimization for pv system reactive power regulation. IEEE Trans Sustain Energy 6(4):1346–1355. ISSN: 19493029. https://doi.org/10.1109/TSTE.20152433957

  16. Yang Y, Wu W (2018) A distributionally robust optimization model for realtime power dispatch in distribution networks. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2018.2834564

    Article  Google Scholar 

  17. Ahn C, Peng H (2013) Decentralized voltage control to minimize distribution power loss of microgrids. IEEE Trans Smart Grid 4(3):1297–1304. ISSN: 1949-3053. https://doi.org/10.1109/TSG.2013.2248174

  18. Zhang W, Liu W, Wang X, Liu L, Ferrese F (2014) Distributed multiple agent system based online optimal reactive power control for smart grids. IEEE Trans Smart Grid 5(5):2421–2431. ISSN: 19493053. https://doi.org/10.1109/TSG.2014.2327478

  19. Dall’Anese E, Dhople SV, Giannakis GB (2016) Photovoltaic inverter controllers seeking AC optimal power flow solutions. IEEE Trans Power Syst 31(4):2809–2823. ISSN: 08858950. https://doi.org/10.1109/TPWRS.2015.2454856, arXiv: 1501.0188

  20. Bolognani S, Carli R, Cavraro G, Zampieri S (2015) Distributed reactive power feedback control for voltage regulation and loss minimization. IEEE Trans Autom Control 60(4):966–981. ISSN: 00189286. https://doi.org/10.1109/TAC.2014.2363931, arXiv: 1303.7173

  21. Arnold DB, Negrete-Pincetic M, Sankur MD, Auslander DM, Callaway DS (2016) Model-free optimal control of var resources in distribution systems: an extremum seeking approach. IEEE Trans Power Syst 31(5):3583–3593. ISSN: 08858950. https://doi.org/10.1109/TPWRS.2015.2502554

  22. Zhang W, Gandhi O, Quan H, Rodríguez-Gallegos CD, Srinivasan D (2018) A multi-agent based integrated volt-var optimization engine for fast vehicle-togrid reactive power dispatch and electric vehicle coordination. Appl Energy 229:96–110. ISSN: 03062619. https://doi.org/10.1016/j.apenergy.2018.07.092

  23. Erseghe T (2014) Distributed optimal power flow using ADMM. IEEE Trans Power Syst 29(5):2370–2380. ISSN: 08858950. https://doi.org/10.1109/TPWRS.2014.2306495

  24. Zheng W, Wu W, Zhang B, Sun H, Liu Y (2016) A fully distributed reactive power optimization and control method for active distribution networks. IEEE Trans Smart Grid 7(2):1021–1033. ISSN: 19493053. https://doi.org/10.1109/TSG.2015.2396493

  25. Šulc P, Backhaus S, Chertkov M (2014) Optimal distributed control of reactive power via the alternating direction method of multipliers. IEEE Trans Energy Convers 29(4):968–977. ISSN: 08858969. https://doi.org/10.1109/TEC.2014.2363196, arXiv: 1310.5748

  26. Baker K, Bernstein A, Dall’Anese E, Zhao C (2018) Network-cognizant voltage droop control for distribution grids. IEEE Trans Power Syst 33(2):2098–2108. ISSN: 0885-8950. https://doi.org/10.1109/TPWRS2017.2735379, arXiv: 1702.02969

  27. Weckx S, Driesen J (2016) Optimal local reactive power control by pv inverters. IEEE Trans Sustain Energy 7(4):1624–1633. ISSN: 19493029. https://doi.org/10.1109/TSTE.2016.2572162

  28. Zhu H, Liu HJ (2016) Fast local voltage control under limited reactive power: optimality and stability analysis. IEEE Trans Power Syst 31(5):3794–3803

    Google Scholar 

  29. Liu HJ, Shi W, Zhu H (2018) Hybrid voltage control in distribution networks under limited communication rates. IEEE Trans Smart Grid 1. ISSN: 1949-3053. https://doi.org/10.1109/TSG.2018.2797692

  30. Sondermeijer O, Dobbe R, Arnold D, Tomlin C (2019) Regression-based inverter control for decentralized optimal power flow and voltage regulation. arXiv:1902.08594v1

  31. Dobbe R, Sondermeijer O, Fridovich-keil D, Arnold D, Callaway D, Tomlin C (2018) Data-driven decentralized optimal power flow 1–10. arXiv:1806.06790v1

  32. Bellizio F, Karagiannopoulos S, Aristidou P, Hug G (2018) Optimized local control for active distribution grids using machine learning techniques. In: IEEE power & energy society general meeting, Portland, Oregon. IEEE, USA. ISBN: 9781538677032

    Google Scholar 

  33. Gandhi O, Rodriguez-Gallegos CD, Reindl T, Srinivasan D (2018) Locally determined voltage droop control for distribution systems. In: 2018 IEEE innovative smart grid technologies - Asia (ISGT Asia). IEEE, Singapore, pp 425–429. ISBN: 978-1-5386-4291-7. https://doi.org/10.1109/ISGT-Asia.20188467784

  34. Gandhi O, Zhang W, Rodríguez-Gallegos CD, Verbois H, Sun H, Reindl T, Srinivasan D (2020) Local reactive power dispatch optimisation minimising global objectives. Appl Energy 262. ISSN: 03062619. https://doi.org/10.1016/j.apenergy.2020.114529

  35. Savier JS, Das D (2007) Impact of network reconfiguration on loss allocation of radial distribution systems. IEEE Trans Power Deliv 22(4):2473–2480. ISSN: 08858977. https://doi.org/10.1109/TPWRD.2007.905370

  36. Zhang D, Fu Z, Zhang L (2007) An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems. Electr Power Syst Res 77(5–6):685–694. ISSN: 03787796. https://doi.org/10.1016/j.epsr.2006.06.005

  37. Eminoglu U, Hocaoglu MH (2009) Distribution systems forward/backward sweep-based power flow algorithms: a review and comparison study. Electr Power Compon Syst 37(1):91–110. ISSN: 15325008. https://doi.org/10.1080/15325000802322046

  38. Baran ME, Wu FF (1989) Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans Power Deliv 4(2):1401–1407. ISSN: 0885-8977. https://doi.org/10.1109/61.25627

  39. Farivar M, Zhou X, Chen L (2015) Local voltage control in distribution systems: an incremental control algorithm. In: 2015 IEEE international conference on smart grid communications (SmartGridComm), pp 732–737

    Google Scholar 

  40. Li N, Qu G, Dahleh M (2014) Real-time decentralized voltage control in distribution networks. In: Fifty-second annual allerton conference, pp 582–588

    Google Scholar 

  41. Kersting WH (2001) Radial distribution test feeders. In: Proceedings of the IEEE power engineering society transmission and distribution conference, winter meeting, vol 2, pp 908–912. ISSN: 21608563. https://doi.org/10.1109/PESW.2001.916993

  42. Energy Market Authority (2018) Singapore half-hourly system demand data. https://www.ema.gov.sg/statistic.aspx?sta

  43. EMC (2018) Energy market price information. https://www.emcsg.com/marketdata/priceinformation. Accessed 04 Jan 2018

  44. Use of system charges (2016). https://www.mypower.com.sg/documents/ts-usc.pdf. Accessed 04 Jan 2018

  45. Dong Z, Zhao L, Yang D, Reindl T (2017) Combine deep neural network and tree based machine learning models using stacked generalization to forecast hourly solar irradiance in tropical regions. In: 33rd European photovoltaic solar energy conference and exhibition, pp 2075–2078

    Google Scholar 

  46. Verbois H, Rusydi A, Thiery A (2018) Probabilistic forecasting of day-ahead solar irradiance using quantile gradient boosting. Sol Energy 173:313–327. ISSN: 0038-092X. https://doi.org/10.1016/j.solener.201807.071

  47. Ineichen P, Perez R (2002) A new airmass independent formulation for the Linke turbidity coefficient. Sol Energy 73(3):151–157

    Google Scholar 

  48. Elkhatib ME, Shatshat RE, Salama MM (2012) Decentralized reactive power control for advanced distribution automation systems. IEEE Trans Smart Grid 3(3):1482–1490. ISSN: 19493053. https://doi.org/10.1109/TSG.2012.2197833

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktoviano Gandhi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gandhi, O. (2021). Reactive Power Dispatch for Large Number of PV Installations. In: Reactive Power Support Using Photovoltaic Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-61251-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61251-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61250-4

  • Online ISBN: 978-3-030-61251-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics