Skip to main content

High-Performance Plastic Gears

  • Chapter
  • First Online:
Recent Advances in Gearing

Abstract

Plastic gears have been used for decades in a wide variety of applications such as consumer articles or electromechanical actuators in the automotive sector. Plastic specific material properties such as low-density and high-damping characteristics and the possibility of mass production through injection molding are advantageous and contribute to the increasing application of plastic gears. However, the comparatively large differences in material properties compared to steel result in plastic gears mostly being used in low-power drives. In particular, the high-temperature dependency of the material properties and lower strength numbers often represent a challenge for the application of plastic gears.

In most cases, plastic gears are running dry or under starved lubrication. In the context of these operating conditions, the transmission of motion is often of principal importance as the potential to transmit power is limited due to the high level of frictional heat in combination with limited capability for heat removal. The use of a lubricant is required for the transmission of increased power. Grease lubrication offers the possibility of heat dissipation and the reduction of wear. If even higher power is to be transmitted, oil lubrication is required. Operation under oil lubrication separates the tooth flanks from each other and ensures effective dissipation of the heat generated in tooth contact.

Today, VDI 2736 is mainly used for the design and rating of plastic gears. In addition to information on the design of the wheel body and manufacturing of plastic gears, this guideline contains approaches for temperature calculation and load carrying capacity calculation. Due to the high-temperature dependency of the material properties of thermoplastic materials, knowledge of the gear temperature is of essential importance in the design of plastic gears and one of the main steps of the load carrying capacity calculation. VDI 2736 uses the basic principles of the standard DIN 3990 developed for steel gears to calculate the tooth root and tooth flank load capacity. Especially the high deflections under load compared to steel gears are currently not sufficiently considered in VDI 2736. Current research provides new knowledge on the consideration of deflection effects and their influence on the gear load carrying capacity of modern thermoplastic materials and contributes to the optimized design of plastic gears. On the material side, new high-performance plastics are constantly being developed, which further increase the temperature resistance and strength properties required. In addition to widely used materials such as polyacetal and polyamides, polyetheretherketones and other high-performance materials are increasingly being applied. Today, the low availability of standardized strength values represents a challenge for the design of ideally dimensioned components. For this reason, in addition to the investigation of the thermal and tribological operating behavior of plastic gears, the generation of standardized determined strength values is of particular interest.

The following chapter presents an overview of the state of the art and application of plastic gears, introduces existing design and calculation methods for plastic gears, and summarizes some main results of actual research work performed at FZG institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a (mm):

Center distance

aACR (–):

Auxiliary factor to calculate Yε, ACR

AG (m2):

Heat dissipating surface of the mechanism housing

b (mm):

Face width

bH (mm):

Hertzian semi-width

bw (mm):

Common face width of the gear pair

Cα (μm):

Amount of tip relief

c′ (N/(mm∙μm)):

Single stiffness

d1 (mm):

Reference diameter

ED (–):

Relative tooth-engagement time

FN (N):

Normal force

FR (N):

Friction force

Ft (N):

Tangential force

fzi (–):

Correction factor of Δεw

fεβ (–):

Correction factor of overlap ratio

i (–):

Transmission ratio

HV (–):

Tooth loss factor

KA (–):

Application factor

KF (–):

Application factor for tooth root load

KFα (–):

Face factor

KFβ (–):

Width factor

KH (–):

Factor for tooth flank loading

Kv (–):

Dynamic factor

kW 10−6∙mm3/(N∙m):

Wear coefficient

kϑ, Fla K∙(m/s)0.75∙mm1.75/W:

Heat transfer coefficient of the plastic gear (flank)

kϑ, Fuß K∙(m/s)0.75∙mm1.75/W:

Heat transfer coefficient of the plastic gear (root)

lFl (mm):

Profile line length of the active tooth flank

mn (mm):

Normal module

NL (–):

Number of load cycles

P (W):

Power

pet (mm):

Transverse normal base pitch

pH (N/mm2):

Hertzian pressure

Rλ, G (K∙mm2/W):

Heat transfer resistance of the mechanism housing

SFmin (–):

Required minimum safety factor (root)

SHmin (–):

Required minimum safety factor (flank)

T1, 2 (Nm):

Torque

Td (Nm):

Torque

u (–):

Transmission ratio

v1, 2 (m/s):

Circumferential speed

vg (m/s):

Sliding speed

vt (m/s):

Tangential speed

vΣ (m/s):

Sum speed

Vol (m3):

Volume

w (N/mm):

Normal line load

Wm (mm):

Averaged linear wear

Wzul (mm):

Permissible linear wear

YFa (–):

Form factor

YSa (–):

Stress correction factor

YSt (–):

Stress correction factor

Yβ (–):

Helix angle factor

Yε (–):

Contact ratio factor

Yε, ACR (–):

Modified contact ratio factor

z1, 2 (–):

Number of teeth (pinion/wheel)

ZE (–):

Elasticity factor

ZH (–):

Zone factor

ZR (–):

Surface roughness factor

Zβ (–):

Spiral angle factor

Zε (–):

Contact ratio factor

Δεw (–):

Load-induced increase in actual contact ratio

Δεzi (–):

Approximated increase in actual contact ratio due to the numbers of teeth

Δϑtooth (K):

Increase of tooth temperature

εα (–):

Transverse contact ratio

εα, w, mod (–):

Modified actual contact ratio

ϑ0 (°C):

Ambient temperature

ϑFuß (°C):

Tooth root temperature

ϑFla (°C):

Tooth flank temperature

ϑM (°C):

Bulk temperature

ϑOil (°C):

Oil temperature

μ (–):

Coefficient of friction

σF (N/mm2):

Tooth root stress

σF0 (N/mm2):

Nominal tooth root stress

σFlimN (N/mm2):

Fatigue strength

σFP (N/mm2):

Permissible root strength

σH (N/mm2):

Flank pressure

σHlimN (N/mm2):

Rolling contact fatigue strength

σHP (N/mm2):

Permissible flank pressure

References

  1. Gunter Erhard: Construction with plastics (in German: Konstruieren mit Kunststoffen). Carl Hanser Verlag, München, 4th edition (2008).

    Google Scholar 

  2. VDI 2736 Sheet 1: Thermoplastic gear wheels - Materials, material selection, production methods, production tolerances, form design (in German: Thermoplastische Zahnräder - Werkstoffe, Werkstoffauswahl, Herstellverfahren, Herstellgenauigkeit, Gestalten) (2014).

    Google Scholar 

  3. Fürstenberger, M.: Operating behavior of loss-optimised plastic gears - losses, temperatures, load carrying capacity and dynamic operating behavior (in German: Betriebsverhalten verlustoptimierter Kunststoffzahnräder - Verzahnungsverluste, Temperaturen, Tragfähigkeit und dynamisches Betriebsverhalten). P.Hd. Thesis, TU München (2013).

    Google Scholar 

  4. Hachmann, H., & Strickle, E. (1966). Polyamides as gear materials (in German: Polyamide als Zahnradwerkstoffe). Konstruktion, 18, 3.

    Google Scholar 

  5. VDI 2736 Sheet 2: Thermoplastic gear wheels - Cylindrical gears - Calculation of the load-carrying capacity (in German: Thermoplastische Zahnräder - Stirnradgetriebe Tragfähigkeitsberechnung) (2014).

    Google Scholar 

  6. Blok, H. (1937). Measurement of temperature flashes on gear teeth under E.P. conditions. In Proceedings of the general discussion on lubrication and Lubricants.

    Google Scholar 

  7. Takanashi, S.; Shoji, A.: On the temperature rise in the teeth of plastic gears. International Power Transmission & Gearing Conference (1980).

    Google Scholar 

  8. DIN 3990 Part 1–5: Calculation of load capacity of cylindrical gears (in German: Tragfähigkeitsrechnung von Stirnrädern) (1987).

    Google Scholar 

  9. ISO 6336:2016: Calculation of load capacity of spur and helical gears (2016).

    Google Scholar 

  10. Hasl, C.: Tooth load carrying capacity of plastic gears (in German: Zur Zahnfußtragfähigkeit von Kunststoffstirnrädern). P.Hd. Thesis, TU München (2019).

    Google Scholar 

  11. Hasl, C., Illenberger, C. M., Oster, P., Tobie, T., & Stahl, K. (2018). Potential of oil-lubricated cylindrical plastic gears. Journal of Advanced Mechanical Design, Systems and Manufacturing, 1, 12.

    Google Scholar 

  12. DIN ISO 14635-1: Gears - FZG test procedures - Part 1: FZG test method A/8.3/90 for relative scuffing load-carrying capacity of oils (in German: Zahnräder – FZG-Prüfverfahren – Teil 1: FZG-Prüfverfahren A/8,3/90 zur Bestimmung der relativen Fresstragfähigkeit von Schmierölen) (2006).

    Google Scholar 

  13. Hinterstoißer, M.: Optimization of the efficiency of spur gears (in German: Zur Optimierung des Wirkungsgrades von Stirnradgetrieben). P.Hd. Thesis, TU München (2014).

    Google Scholar 

  14. Hasl, C., Oster, P., Tobie, T., & Stahl, K. (2016). Method for calculating the actual contact ratio under load for plastic spur gears (in German: Verfahren zur Berechnung der Überdeckung unter last von Kunststoffstirnrädern). Forschung im Ingenieurwesen., 80, 111.

    Article  Google Scholar 

  15. DIN 867: Basic rack tooth profiles for involute teeth of cylindrical gears for general engineering and heavy engineering (in German: Bezugsprofile für Evolventenverzahnungen an Stirnrädern (Zylinderrädern) für den allgemeinen Maschinenbau und den Schwermaschinenbau) (1986).

    Google Scholar 

  16. Illenberger, C. M., Tobie, T., & Stahl, K. (2019). Flank load carrying capacity of oil-lubricated high performance plastic gears. Forschung im Ingenieurwesen, 83(3), 545–552.

    Article  Google Scholar 

  17. Schilling, M.; Ege: Reference oils - Reference oils for bearings, gear and clutch investigations - Data collection for mineral oils (in German: Referenzöle - Referenzöle für Wälz- und Gleitlager, Zahnrad- und Kupplungsversuche - Datensammlung für Mineralöle) FVA-Book Nr. 180, Forschungsvereinigung Antriebstechnik e.V. (FVA), Frankfurt am Main (1985).

    Google Scholar 

  18. Weinberger, U.; Fingerle, A.; Otto, M.; Stahl, K.: RItzelKORrektur, Frankfurt am Main (2018).

    Google Scholar 

  19. Maier, E., Ziegltrum, A., Lohner, T., & Stahl, K. (2017). Characterization of TEHL contacts of thermoplastic gears. Forschung im Ingenieurwesen, 81, 317.

    Article  Google Scholar 

  20. Schubert, D.; Hertle, S.; Drummer, D.: Influence of process-related microstructures on the tooth root load carrying capacity of POM spur gears (in German: Einfluss prozessbedingter Gefügestrukturen auf die Zahnfußtragfähigkeit von POM-Stirnrädern). Konstruktion 03/19 (2019).

    Google Scholar 

  21. Hlebanja, G., Hribersek, M., Erjavec, M., & Kulovec, S. (2019). Durability investigation of plastic gears. In 6th International BAPT Conference "Power Transmissions 2019" (p. 287).

    Google Scholar 

  22. Trobentar, B., Kulovec, S., Hlebanja, G., & Glodez, S. (2020). Experimental failure analysis of S-polymer gears. Engineering Failure Analysis., 111, 104496.

    Article  Google Scholar 

  23. Nakamura, M.; Atsushi, K.; Moriwaki, I.: Performance of injection-molded plastic helical gears finished by hot rolling. Proceedings of the ASME 2011 International Engineering Technical Conferences & Computers and information in Engineering Conference (2011).

    Google Scholar 

  24. Raghuraman, N., Houser, D., & Wright, H. (2019). Numerical thermal 3D model to predict the surface and body temperature of spur and helical plastic gears. In American Gear Manufacturers Association Fall Technical Meeting.

    Google Scholar 

  25. Hasl, C., Liu, H., Oster, P., Tobie, T., & Stahl, K. (2017). Method for calculating the tooth root stress of plastic spur gears meshing with steel gears under consideration of deflection-induced load sharing. Mechanism and Machine Theory., 111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Illenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Illenberger, C.M., Tobie, T., Stahl, K. (2022). High-Performance Plastic Gears. In: Radzevich, S.P. (eds) Recent Advances in Gearing. Springer, Cham. https://doi.org/10.1007/978-3-030-64638-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64638-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64637-0

  • Online ISBN: 978-3-030-64638-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics