Skip to main content

Optimal Selection of the Structural Scheme of Compound Two-Carrier Planetary Gear Trains and Their Parameters

  • Chapter
  • First Online:
Recent Advances in Gearing

Abstract

The Torque Method is an easy way for kinematic and power analysis of planetary gear trains, both simple and compound ones. Moreover it gives possibility of optimal choice of a structural scheme (and its parameters) of compound planetary gear trains.

In this chapter most common ways of optimization of planetary gear trains are overviewed. Appropriate optimization criteria of the most common simple planetary gear train (with one external and one internal meshing) are discussed. Multi-objective choice of structural scheme and its parameters of two-carrier planetary gear trains is proposed. Two-carrier planetary gear trains with three and four external shafts are considered. The choice is made between all possible structural schemes of planetary gear trains in question through the torque method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the end of the twentieth century, there was a tendency toward dismissing the optimization methods with weight coefficients as subjective. Modern computer technology with its advanced dialogue mode enables the rapid simulation of different variants (with different weight coefficients) and renders these methods more flexible and suitable for various tasks, which definitely compensates the shortcomings of subjectivism and even turns it into advantage.

  2. 2.

    Equivalent efficiency is calculated for two-speed PGTs on the base of efficiencies in work with both speeds (i1 and i2) considering relative working time of each of them.

References

  1. Dimchev, G. (2000). Geometrical and technical-economical optimization of gear trains. Habilitation Thesis. Sofia: Technical University. (in Bulgarian).

    Google Scholar 

  2. Goll, S. (1980). Einfluss auf die Tragfaigkeit Zahnrader. Maschinenbautechnik, 86.

    Google Scholar 

  3. Linke, H. And G. Gayewski. Breitenlastverteilung unter besonderen Berucksichtigung bei Verzahnungen. Maschinenbautechnik. 1983, Nr.10.

    Google Scholar 

  4. Roth, K., Kollenroth, F. Zahnradpahrungen mit komplementprofilen. Konstruktion. 1982, Nr. 3.

    Google Scholar 

  5. Shaker, M., T. Zou, J. Angeles, and A. Morozov. Optimization of tooth-root profile for maximum load-carrying capacity: spur and bevel gears. CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, Ottawa, Ontario: May 28 and 29, 2015. http://iftomm.net/images/Documents/ConferenceProceedings/CCToMM_2015.pdf

  6. Satoshi, Oda. Study on bending fatigue strength of gears. // Bull. ISME, Nr.177, 1980.

    Google Scholar 

  7. Zhuravlev, G.A. and G.A. Ageev. Synthesis of spur gear trains with minimal bending stresses. Vestnik Mashinostroenia 1982, No 2. (in Russian).

    Google Scholar 

  8. Stoyanov, S., A. Dobreva, and V. Dobrev. Design system for gear trains in the environment of SolidWorks®. Proceedings of the “Power Transmissions 2006”, Novi Sad, Serbia, 25–25 April 2006, pp. 91–94.

    Google Scholar 

  9. Gushchin, V. G., & Ostrovskyi, G. N. (1980). Spur gear train with multidirectional deviations of the pitch of gearing. Izvestya VUZ Mashinostroenie, 11. (in Russian).

    Google Scholar 

  10. Leistner, F. And E. Freitag. Einfluss deer Taumelabweichung auf das Tragbild bei Stirnradgetrieben. Maschinenbautechnik. 1979, Nr.10.

    Google Scholar 

  11. Teraushi, Y., H. Nadano, and N. Miaoru. On the effect of the tooth profile modification on the dynamic load of the spur gear. Bull. ISME, Nr. 207, 1982.

    Google Scholar 

  12. Ma, H., Pang, X., Feng, R., & Wen, B. (2016). Evaluationofoptimumprofile modification curvesofprofile shiftedspurgearsbasedonvibrationresponses. Mechanical Systems and Signal Processing., 70-71, 1131–1149. https://doi.org/10.1016/j.ymssp.2015.09.019.

    Article  Google Scholar 

  13. Vulić, A. And J. Stefanović-Marinović. Design parameters for planetary gear transmissions optimization. Proceedings of the “Power Transmissions 2006”, Novi Sad, Serbia, 25–25 April 2006, pp. 137–142.

    Google Scholar 

  14. Klein, B., and Z. Li. Analytisches Verfahren zur paramertrischen Optimierung von Zahnradgetrieben. Antriebstechnik. 1995, Nr. 3, S. 75–78.

    Google Scholar 

  15. Lambin, L. N. (1983). Assignment of displacement factors in the automated design of gear trains. Vestnik Mashinostroenya, 6. (in Russian).

    Google Scholar 

  16. Karaivanov, D. (2009). X-Gear – an European project in help of gear trains manufacturers. Machines Technologies Materials, 3(3–4), 3–8. (in Bulgarian).

    Google Scholar 

  17. Concli, F., & Coenen, J. (2015). Low-lost gears for precision planetary gearboxes: Influence of the gear design on the meshing and the churning power losses. VDI-Berichte, 2255-1, 53–65. ISSN 0083-5560.

    Google Scholar 

  18. Concli, F., & Gorla, C. (2013). A new methodology for the prediction of the no-load losses of gears: CFD an experimental investigation of the efficiency of a planetary gearbox. VDI-Berichte, 2199-2, 1125–1137. ISSN 0083-5560.

    Google Scholar 

  19. Hohn, B. -R., K. Stahl and P. Gwinner. Improved efficiency for high-ratio planetary gear transmission for wind turbines – Low-loss Wolfrom transmission for wind turbines. VDI-Berichte 2199–2202, 2013, pp. 1113–1124. ISSN 0083-5560.

    Google Scholar 

  20. Kruszynski, B. Einfuss des Walzfraserverschleisses auf die Eigenspanungen von Zahnrader. Werkstoff und Betrieb, 1981, Nr. 9.

    Google Scholar 

  21. Gulya, Z. N. (1981). Durability control of cylindrical gear wheels. Vysshaya Shkola: Lvov. (in Russian).

    Google Scholar 

  22. Ponamarev, V. P., & Shchin, D. P. (1981., No. 3). Technological tolerances and dimensions determination in gear cutting process. Vestnik Mashinostroeniya.. (in Russian).

    Google Scholar 

  23. Stefanović-Marinović, J. and M. Milovančević. An application of multicriteria optimization to planetary gear transmissions. Proceedings of The International Conference Mechanical Engineering in XXI Century, 25–28 November 2010, Niš, Serbia, pp. 133–136.

    Google Scholar 

  24. Norihisa, A., & Susomi, H. (1981). Research on bending strength properties spur gears without rim. Bull. ISME, Nr195.

    Google Scholar 

  25. Tae-Hyong, C., & Toshiyui, S. (1982). Bending stress of internal Spur Gear. Bull. ISME, 202.

    Google Scholar 

  26. Sholomov, N. M. (1984., No. 4). Stresses determination in the tooth root of thin-rim gears. Vestnik Mashinostroeniya.. (in Russian).

    Google Scholar 

  27. Arnaudov, K., & Karaivanov, D. (2019). Planetary gear trains (p. 358). Boca Raton: CRC Press. ISBN 978-1-138-31158-5.

    Book  Google Scholar 

  28. Peeken, H. and J. Widanata. Rechnerunterstutze Konstruktoin von Maschinen-gehausen zur Optimierung. Konstruktion. 1982, Nr. 6.

    Google Scholar 

  29. Pinenkamp, W. Methoden zur Konstruktion und Prufung grosser Zahnradgetrieben. Congr. mond. engrenage, Paris, 1977, Nr. 2.

    Google Scholar 

  30. Winter H. Gears & Gear Research. Gearing and transmissions. 1995, No. 1.

    Google Scholar 

  31. Ognianović, M. and S. Ćirić-Kostić. Gear disturbance energy transmission through the gear system and frequency spectrum. Proceedings of the “Power Transmissions 2006”, Novi Sad, Serbia, 25–25 April 2006, pp. 167–172.

    Google Scholar 

  32. Dinev, G. One approach for multicriteria optimization of one stage gear transmission. In Proceedings of 6th Int. Conference RaDMI 2006, Budva, Montenegro, 13–17 September 2006 (pp. 201–206).

    Google Scholar 

  33. Ushakov, M. M. (1985., No. 8). Relative weight of gear trains. Izvestiya VUZ Mashinostroenie.. (in Russian).

    Google Scholar 

  34. Kos, M. Bewertung der Ausgleichsysteme in Planetengetriebe. Konstruktion. 1981, Nr. 3.

    Google Scholar 

  35. Petrov, Z. V., & Prevalov, V. S. (1984). Minimization of the reduced moment of inertia of two-stage cylindrical gear trains. Izvestiya VUZ Mashinostroenie, 12. (in Russian).

    Google Scholar 

  36. Week, M., & Gold, P. (1977). Moglichkeiten und Grenzen bei der Bestimmung des dynamischen Verhaltens von Zahnradgetrieben. Paris: Congr. mond. engrenage.

    Google Scholar 

  37. Arnaudov, K., & Karaivanov, D. (2004). Raum- und Massesparende Zahnradgetriebe. In Proceedings of the 3rd Conference about Construction, Shaping & Design. Novi Sad (pp. 73–78).

    Google Scholar 

  38. Karaivanov, D. Structural analysis of coupled multi-carrier planetary gear trains – from lever analogy to multi-objective optimization. Proceedings of the 3rd Int. Conf. on Manufacturing Engineering (ICMEN), 1–3 October 2008, Chalkidiki, Greece, pp. 579–588.

    Google Scholar 

  39. Rao, S.S. Multiobjective optimization in structural design with stochastic processes. AIAA Journal. 1984, 108, No. 4, pp. 1670-1678.

    Google Scholar 

  40. Rao, S. S., & Eslampour, H. R. (1986). Multistage multiobjective optimization of gearboxes. Journal of Mechanisms, Transmissions, and Automation in Design., 108, 461–468.

    Article  Google Scholar 

  41. Savsani, V., Rao, R., & Vakharia, D. (2010). Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms. Mechanism and Machine Theory, 45, 531–541.

    Article  Google Scholar 

  42. Troha, S., P. Petrov, and D. Karaivanov. Regarding the optimization of coupled two-carrier planetary gears with two coupled and four external shafts. Machinebuilding and Electrical Engineering. 2009, LVIII (1), pp. 49–55. ISSN 0025-455X.

    Google Scholar 

  43. Bozzolo, A., & Zangani, D. (2009). Development of gear drive-trains based on new materials and novel gear systems. In Proceedings of the 3rd Int. Conf. Power Transmissions’09 (edited by A. Mihailidis), Kallithea [Greece] (pp. 249–253). ISBN 978-960-243-662-2.

    Google Scholar 

  44. Mihailidis, A. and C. Pupaza. Simulation Driven Design of Internal Gears. Multicriteria optimization of internal gears. VDI-Berichte, Nr. 2108, 2010, pp. 725–740.

    Google Scholar 

  45. Brüser, P. (1989). Optimierung von Planetengetrieben. Antriebstechnik, 28(2), 64–67.

    Google Scholar 

  46. Daoudi, K., El-M. Boudi, and M. Abdellah. Genetic Approach for Multiobjective Optimization of Epicyclical Gear Train. Mathematical Problems in Engineering. 2019, 9324903, 10, https://doi.org/10.1155/2019/9324903.

  47. Stefanović-Marinović, J., S. Troha, and M. Milovančević. An application of multicriteria optimization to the two-carrier two-speed planetary gear trains. Facta Universitatis, Series: Mechanical Engineering. 2017, 15 (1), pp. 85–95. ISSN 0354–2025 (Print) , ISSN 2335–0164 (Online).

  48. Stefanović-Marinović, J., Troha, S., Anđelković, B., & Milovančević, M. (2018). Efficiency of planetary gear trains as criterion for optimal solution selection. Machine Design., 3, 95–98. ISSN 1821-1259.

    Google Scholar 

  49. Troha, S. (2011). Analysis of a planetary change gear train’s variants. Dissertation. Croatia: Engineering Faculty, University of Rijeka. (in Croatian).

    Google Scholar 

  50. Troha, S., Ž. Vrcan, D. Karaivanov, and M. Isametova. The selection of optimal reversible two-speed planetary gear trains for machine tool gearboxes. FACTA UNIVERSITATIS, Series: Mechanical Engineering. 2020, 18 (1), pp. 121–134. ISSN: 0354–2025 (Print), ISSN: 2335–0164 (Online).

    Google Scholar 

  51. Troha, S., Stefanović-Marinović, J., Vrcan, Ž., & Milovančević, M. (2020). Selection of the optimal two-speed planetary gear train for fishing boat propulsion. FME Transactions., 48(2), 397–403. ISSN 1451-2092.

    Article  Google Scholar 

  52. Tkachenko, B. A. (2003). Planetary mechanisms. Kharkov: Kharkov Aviation Institute Publ. (in Russian).

    Google Scholar 

  53. Arnaudov, K., & Karaivanov, D. (2001). Engineering analysis of the coupled two-carrier planetary gearing through the lever analogy. In Proceedings of the International Conference on Mechanical Transmissions (pp. 44–49). Chongqing, China: China Machine Press.

    Google Scholar 

  54. Karaivanov, D. (2000). Theoretical and experimental studies of influence of the structure of coupled two-carrier planetary gear trains on its basic parameters. Dissertation. Sofia: University of Chemical Technology and Metallurgy. (in Bulgarian).

    Google Scholar 

  55. Karaivanov, D., S. Troha, and R. Pavlova. Experimental study of the losses in a three-stage planetary gear train. Proceedings of the 3rd Int. Conf. “Power Transmissions’09”, edited by A. Mihailidis, Kallithea [Greece], 1–2 Oct., 2009, pp. 527–532. ISBN 978-960-243-662-2.

    Google Scholar 

  56. Kurth, F. (2012). Efficiency determination and synthesis of complex-compound planetary gear transmissions. Dissertation. Munich: Technical University.

    Google Scholar 

  57. Niemann, G., & Winter, H. (1995). Maschinenelemente. Band 2. Zahnradgetriebe – Grundlagen, Stirnradgetriebe. 2. Auflage. Berlin: Springer-Verlag.

    Google Scholar 

  58. Arnaudov, K., & Karaivanov, D. (2017). Torque method for analysis of compound planetary gear trains (p. 92). Beau Bassin [Mauritius]: LAP Lambert Academic Publishing. ISBN 978-620-2-01693-3.

    Google Scholar 

  59. Arnaudov, K., Alipiev, O., & Karaivanov, D. (2020). Biplanetary gear trains and their analysis through the torque method. In V. Goldfarb, E. Trubachev, & N. Barmina (Eds.), New approaches to gear design and production (Mechanisms and Machine Science 81) (pp. 311–322). Springer Nature Switzerland AG. ISSN 2211-0984, ISBN 978-3-030-34944-8, https://doi.org/10.1007/978-3-030-34945-5.

  60. ISO 6336 Calculation of load capacity of spur and helical gears, 2006.

    Google Scholar 

  61. Karaivanov, D. Structural analysis of the coupled planetary gears with considering the efficiency of the coupling gears. Proceedings of the 2th Int. Conf. on Manufacturing Engineering (ICMEN), Kallithea of Chalkidiki, Greece, October 5–7, 2005, pp. 381–387. ISBN 960-243-615-8.

    Google Scholar 

  62. Predki, W., F. Jarhov F., and J. Kettler. Calculation method for the determination of the oil sump temperature of industrial planetary gears. VDI-Berichte 1665–1, pp. 507–522.

    Google Scholar 

  63. Karaivanov, D. and S. Troha. On the structural Analysis of Coupled Planetary Gears. Machinebuilding and electrical engineering. 2005, Special edition – science edition 9, pp. 76–83.

    Google Scholar 

  64. Müller, H. W. (1998). Die Umlaufgetriebe – Auslegung und vielseitige Anwendungen (2. Auflage ed.). Berlin: Springer-Verlag.

    Book  Google Scholar 

  65. Karaivanov, D., & Popov, R. (2003). Experimental study on the clearances of the two-stage planetary gear. Journal of the University of Chemical Technology and Metallurgy, 4(XXXVIII), 1331–1338.

    Google Scholar 

  66. Veits, V. L., Kochura, A. E., & Martynenko, A. E. (1971). Dynamic calculation of machines transmissions (352 p). Leningrad: Mashinostroenie.

    Google Scholar 

  67. Arora, J., & Wang, Q. (2005). Review of formulations for structural and mechanical system optimization. Structural and Multidisciplinary Optimization, 30(4), 252–272.

    Article  MathSciNet  Google Scholar 

  68. Stoyanov, S. (2006). Optimization of technological systems. Tehnika: Sofia. (in Bulgarian).

    Google Scholar 

  69. Karaivanov, D. Handling machines gearings and their optimal choice. Zbornik radova sa Naučno-stručnog skupa Istraživanje i razvoj mašinskih elementa i sistema JAHORINA – IRMES’2002, 2/2, Srpsko Sarajevo - Jahorina, 19. i 20. September 2002, рp. 685–690.

    Google Scholar 

  70. Troha, S., D. Karaivanov, and E. Džindo. Two-speed two-carrier planetary gear trains. 7th International Scientific and Expert Conference TEAM 2015, Technique, Education, Agriculture & Management. Belgrade, Serbia, October 15–16, 2015, pp. 538–542.

    Google Scholar 

  71. Troha, S., N. Lovrin, and M. Milovančević. Selection of two-carrier shifting planetary gear train controlled by clutches and brakes. Transactions of FAMENA. 2012, XXXVI (3), pp. 1–12. ISSN 1333-1124.

    Google Scholar 

  72. Troha, S., Žigulić, R., & Karaivanov, D. (2014). Kinematic operating modes of two-speed two-carrier planetary gear trains with four external shafts. Transactions of FAMENA., 38(1), 63–76. ISSN 1333-1124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix 8.1

Appendix 8.1

Total speed ratio i of six working modes of compound PGTs from Table 8.1 as a function of torques ratios tI and tII of component PGTs.

Scheme

S11

S12

S13

WN(E)

NW(E)

WE(N)

EW(N)

NE(W)

EN(W)

Scheme

S14

S15

S16

WN(E)

NW(E)

WE(N)

EW(N)

NE(W)

EN(W)

Scheme

S22

S23

S24

WN(E)

NW(E)

WE(N)

EW(N)

NE(W)

EN(W)

Scheme

S25

S26

S33

WN(E)

NW(E)

WE(N)

EW(N)

NE(W)

EN(W)

Scheme

S34

S35

S36

WN(E)

NW(E)

WE(N)

EW(N)

NE(W)

EN(W)

Scheme

S44

S45

S46

WN(E)

NW(E)

WE(N)

EW(N)

NE(W)

EN(W)

Scheme

S55

S56

S66

WN(E)

NW(E)

WE(N)

EW(N)

NE(W)

EN(W)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karaivanov, D.P., Troha, S. (2022). Optimal Selection of the Structural Scheme of Compound Two-Carrier Planetary Gear Trains and Their Parameters. In: Radzevich, S.P. (eds) Recent Advances in Gearing. Springer, Cham. https://doi.org/10.1007/978-3-030-64638-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64638-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64637-0

  • Online ISBN: 978-3-030-64638-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics