Skip to main content

Development of Gears from the Antiquity to the Present Time

  • Chapter
  • First Online:
Recent Advances in Gearing

Abstract

The development of human civilization was made possible by mechanical tools, especially those that served to transmit power. And soon in this development, devices with teeth appeared. Gears were simple wooden aids for many centuries, but the evidences of complex mechanical devices of antiquity exist. Water- and animal-powered devices were used during the Middle Ages. The Renaissance accelerated the development of science and technology. And soon after a steam engine was invented, which supplied more energy as it was possible until then. Later, the combustion engine, the turbines, and electric motors also accelerated the development of mechanical transmissions. Today we find complex mechanical transmissions in industrial plants, in high-performance machine tools and robots, as well as in consumer devices, with increasing demands toward higher loads, lower vibration, lower maintenance, no additional lubrication, etc. So, gears are a crucial part of such devices, and their development far from obsolete. Gear shape, technologies, and materials are being researched and developed to find better solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radzevich S P (2020) Personal communication.

    Google Scholar 

  2. Matschoß, C. (1940). Geschichte des Zahnrades. Berlin: VDI.

    Google Scholar 

  3. Rance, P. (2013, 2013). Philo of Bysantium. In R. S. Bagnal et al. (Eds.), The Encyclopedia of Ancient History, 1st Edition (pp. 5266–5268). Blackwell Publishing Ltd.

    Google Scholar 

  4. Wikipedia, s.v. “Antikythera mechanism”. Accessed 10 Jul 2020 from https://en.wikipedia.org/wiki/Antikythera_mechanism.

  5. Efstathiou, K., & Efstathiou, M. (2018). Celestial gearbox. ASME. Mechanical Engineering, 140(09), 31–35. https://doi.org/10.1115/1.2018-SEP1.

    Article  Google Scholar 

  6. Wikipedia, s.v. “Vitruvius”. Accessed 11 Jul 2020 from https://en.wikipedia.org/wiki/Vitruvius.

  7. Wikipedia, s.v. “Reverse overshot water-wheel”. Accessed 11 Jul 2020 from https://en.wikipedia.org/wiki/Reverse_overshot_water-wheel.

  8. Wikipedia, s.v. “List of ancient watermills”. Accessed 11 Jul 2020 from https://en.wikipedia.org/wiki/List_of_ancient_watermills.

  9. Wikipedia, s.v. “Heron of Alexandria”. Accessed 11 Jul 2020 from https://en.wikipedia.org/wiki/Hero_of_Alexandria.

  10. Agricola G (1556) De Re Metallica. Agricola G (1912) The mining magazine (transl: Hoover H C, Hoover L C). London.

    Google Scholar 

  11. Wikipedia, s.v. “Georgius Agricola”. Accessed 11 Jul 2020 from https://en.wikipedia.org/wiki/Georgius_Agricola.

  12. Dohrn-Van Rossum, G. (1996). History of the hour: clocks and modern temporal orders. (transl: Dunlap T). Chicago: The University of Chicago Press. ISBN 0226155102.

    Google Scholar 

  13. Encyclopædia Britannica Online, s.v. “pendulum”. Accessed 12 Jul 2020 from https://www.britannica.com/technology/pendulum

  14. Encyclopædia Britannica Online s.v. “Galileo”. Accessed 12 Apr 2020 from https://www.britannica.com/biography/Galileo-Galilei

  15. Encyclopædia Britannica Online s.v. “Girard Desargues”. Accessed 12 Apr 2020 from https://www.britannica.com/biography/Girard-Desargues

  16. de la Hire, P. (1694). Mémoires de mathématique et de physique. Royale, Paris: Impr.

    Google Scholar 

  17. Complete Dictionary of Scientific Biography (2008a) “La Hire, Philippe De,” Accessed 13 Jul 2020 from Encyclopedia.com: http://www.encyclopedia.com/doc/1G2-2830902429.html

  18. Complete Dictionary of Scientific Biography (2008b) “Camus, Charles-Étienne-Louis,” Accessed 13 Jul 2020 from Encyclopedia.com: http://www.encyclopedia.com/doc/1G2-2830900770.html

  19. The Euler Archive, s.v. “E249—De aptissima figura rotarum dentibus tribuenda”. Accessed 12 Jul 2020 from http://eulerarchive.maa.org/ or https://scholarlycommons.pacific.edu/euler/

  20. Euler, L. (1760). Novi Commentarii academiae scientiarum Petropolitanae, 5(1760), 299–316.

    Google Scholar 

  21. Wikipedia, s.v. “James Watt”. Accessed 12 Jul 2020 from https://en.wikipedia.org/wiki/James_Watt.

  22. Encyclopædia Britannica Online, s.v. “James Watt”. Accessed 12 Jul 2020 from https://www.britannica.com/biography/James-Watt

  23. Jungfrau Railway Accessed 13 Jul 2020 from https://www.jungfrau.ch/en-gb/jungfraujoch-top-of-europe/construction-of-the-jungfrau-railway/

  24. Willis, R. (1841). Principles of mechanism. Cambridge: University Press.

    Google Scholar 

  25. Seherr-Thoss, H. C., & Fronius, S. (1965). Die Entwicklung der Zahnrad-technik: Zahnformen und Tragfähigkeitsberechnung. Berlin: Springer.

    Book  Google Scholar 

  26. Reuleaux, F. (1861). Der Constructeur. Braunschweig: Vieweg.

    Google Scholar 

  27. Sang, E. (1852). A new general theory of the teeth of wheels. Edinburgh: A&C Black.

    Google Scholar 

  28. Matschoß, C. (1925). Männer der Technik: Ein biographisches Handbuch. Berlin: VDI.

    MATH  Google Scholar 

  29. Hermann Pfauter Werkzeugmaschinenfabrik (1976), Ludwigsburg (Hrsg.): Pfauter-Wälzfräsen Teil 1. 2. Auflage. Springer, Berlin 1976, ISBN 3-540-07446-5.

    Google Scholar 

  30. Litvin, F. L. (1997). Development of gear technology and theory of gearing. Cleveland: NASA Lewis Research Center.

    Google Scholar 

  31. Siemens, s.v. “Siemens history, Transportation”. Accessed 13 Jul 2020 from https://new.siemens.com/global/en/company/about/history/news/on-track.html

  32. Encyclopædia Britannica Online s.v. “Sir Charles Algernon Parsons”. Accessed 13 Jul 2020 from https://www.britannica.com/biography/Charles-Algernon-Parsons

  33. DIN 867 (1927) Bezugsprofile für Evolventenverz. An Stirnrädern (Zylinderr.) für allgem. Maschinenbau und den Schwermaschinenbau.

    Google Scholar 

  34. Timoshenko, S. P., & Goodier, J. N. (1951). Theory of elasticity (2nd ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  35. Linke, H. (2010). Stirnradverzahnung, 2., vollständig überarbeitete Auflage. Hanser.

    Google Scholar 

  36. Hertz, H. (1881). Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 92, 156–171.

    MATH  Google Scholar 

  37. Blok H (1937) Measurement of temperature flashes on gear teeth under extreme pressure conditions. In: Proceedings of general discussion lubrication 2, institution of mechanical engineers, p 14–20.

    Google Scholar 

  38. ISO, “About us”. Accessed 14 Jul 2020 from https://www.iso.org/about-us.html

  39. IFTOMM, v.s. “Historical Background”. Accessed 10 Jul 2020 from http://iftomm.net/images/Documents/About/Historical_Background.pdf.

  40. Wildhaber E (1926) Helical gearing. US patent no. 1 601 750, issued 5 Oct 1926.

    Google Scholar 

  41. Novikov ML (1956) U.S.S.R., Patent no. 109,750, 1956.

    Google Scholar 

  42. Niemann, G. (1961). Novikov gear system and other special gear systems for high load carrying capacity (p. 47). VDI Berichte.

    Google Scholar 

  43. Radzevich, S. P. (2012). Dudley’s handbook of practical gear design and manufacture (2nd ed.). Boca Raton: CRC Press, Taylor & Francis Group.

    Book  Google Scholar 

  44. Litvin, F. L., Fuentes, A., Gonzales-Perez, I., Carnevali, L., & Sep, T. M. (2002). new version of Novikov-Wildhaber helical gears: Computerized design, simulation of meshing and stress analysis. Computer Methods in Applied Mechanics and Engineering, 191(49–50, 6), 5707–5740.

    Article  Google Scholar 

  45. Hawkins R M (2005) Non-involute gears with conformal contact. US Patent No. 6,837,123, dated 4 Jan 2005.

    Google Scholar 

  46. Hlebanja, G., & Hlebanja, J. (2009). Uniform power transmission gears. J Mech Eng, 55(7/8), 472–483.

    Google Scholar 

  47. Hlebanja, J. (1976). Konkav-konvexe Verzahnung Ermitlung der Zahnflanken und einige Grenzfälle. Antriebstechnik Jg. 15. Nr., 6, 324–329.

    Google Scholar 

  48. Hlebanja, J., & Hlebanja, G. (2010). Spur gears with a curved path of contact for small gearing dimensions. VDI Berichte, 2108, 1281.

    Google Scholar 

  49. Dudley, W. D. (1988). Gear technology—Past, present, and future. In Proceedings of international conference on gearing, 5–10 Nov (p. 1988). China: Zhengzhou.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorazd Hlebanja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hlebanja, J., Hlebanja, G. (2022). Development of Gears from the Antiquity to the Present Time. In: Radzevich, S.P. (eds) Recent Advances in Gearing. Springer, Cham. https://doi.org/10.1007/978-3-030-64638-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64638-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64637-0

  • Online ISBN: 978-3-030-64638-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics