Skip to main content

The Choice of the Electric Energy Storage Device Type for the Hybrid Power Drive of Military Wheeled Vehicles

  • Conference paper
  • First Online:
Innovations in Mechatronics Engineering (icieng 2021)

Abstract

The purpose of the work is the formation of the scientifically based methodology for calculating the parameters and choosing the electric energy storage device criteria for the designed hybrid drive with the electromechanical transmission for promising military wheeled vehicles. It will be performed the analysis of the main characteristics of batteries and supercapacitors, which are used in vehicles, their advantages and disadvantages, as well as limitations and features of the application; the calculations of the required values of the electric power for the movement of the machine in various road conditions; calculations of the electric energy storage device capacity to ensure the power reserve during the autonomous driving with electric traction in various movement conditions; calculations of the maximum electric energy of the batteries and supercapacitors charge for the recuperation of the machine kinetic energy during emergency braking of the armored personnel carrier. Criteria are determined for choosing parameters of the electric energy storage device for the hybrid drive with the electromechanical transmission for military wheeled vehicles. All calculations are made on the example of the Ukrainian wheeled armored personnel carrier BTR-4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sivakumar, P., Reginald, R., Venkatesan, G., Viswanath, H., Selvathai, T.: Configuration study of hybrid electric power pack for tracked combat vehicles. Def. Sci. J. 67(4), 354–359 (2017). https://doi.org/10.14429/dsj.67.11454

    Article  Google Scholar 

  2. Walentynowicz, J.: Hybrid and electric power drive combat vehicles. J. KONES Powertrain Transp. 18(1), 471–478 (2011)

    Google Scholar 

  3. Military Use of Hybrid Electric Drives. Army Guide Monthly, vol. 12(15), 16–18 (2005)

    Google Scholar 

  4. Robert Bosch. Bosch Automotive Handbook. 9th edn, Robert Bosch GmbH (2014)

    Google Scholar 

  5. Schepmann, S.: Ultracapacitor Heavy Hybrid Vehicle: Model Predictive Control Using Future Information to Improve Fuel Consumption. All Theses TigerPrints Clemson University 168 (2010)

    Google Scholar 

  6. Kozachenko, V.F., Ostrirov, V.N., Lashkevich, M.M.: Transmission on the basis of a valve-inductor motor with independent excitation. Electr. Eng. 2, 54–60 (2014)

    Google Scholar 

  7. Galvagno, E., Rondinelli, E., Velardocchia, M.: Electro-mechanical transmission modeling for series-hybrid tracked tanks. Int. J. Heavy Veh. Syst. 19(3), 256–280 (2012). https://doi.org/10.1504/ijhvs.2012.047916

    Article  Google Scholar 

  8. Volontsevich, D.O., Veretennikov, E.A., Kostianik, I.V., Iaremchenko, A.S., Efremova, A.I., Karpov, V.O.: Determination of the electric drive power for lightly armored caterpillar and wheeled vehicles using single- or two-stage mechanical gearboxes. Electr. Eng. Electr. Mech. 1, 29–35 (2019). https://doi.org/10.20998/2074-272X.2019.1.05

    Article  Google Scholar 

  9. Volontsevich, D.O., Klyuchka, R.V., Sobko, A.P., Strimovskiy, S.V.: Analysis of operating modes of a hybrid drive with an electromechanical transmission on a promising wheeled armored personnel carrier. Integr. Technol. Energy Saving [Integrovani texnologiyi ta energozberezhennya] 4, 34–47 (2018)

    Google Scholar 

  10. Liu, J., Li, X., Wang, Z., Zhang, Y.: Modelling and experimental study on active energy-regenerative suspension structure with variable universe fuzzy PD control. Shock. Vib. 2016, 1–11 (2016). https://doi.org/10.1155/2016/6170275

    Article  Google Scholar 

  11. Kotsur, M.I., Kotsur, I.M., Blizniakov, A.V.: Increase effectiveness of reversible braking mode realization of the wound-rotor induction motor. Eastern-Eur. J. Enterp. Technol. 8(73), 27–30 (2015). https://doi.org/10.15587/1729-4061.2015.36670

    Article  Google Scholar 

  12. Sinchuk, O., Kozakevich, I., Kalmus, D., Siyanko, R.: Examining energy-efficient recuperative braking modes of traction asynchronous frequency-controlled electric drives. Eastern-Eur. J. Enterp. Technol. 1(1), 50–56 (2017). https://doi.org/10.15587/1729-4061.2017.91912

    Article  Google Scholar 

  13. Sevilla, M., Mokaya, R.: Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7(4), 1250–1280 (2014). https://doi.org/10.1039/c3ee43525c

    Article  Google Scholar 

  14. Fomin, O., Sulym, A., Kulbovskyi, I., Khozia, P., Ishchenko, V.: Determining rational parameters of the capacitive energy storage system for the underground railway rolling stock. Eastern-Eur. J. Enterp. Technol. 2(1), 63–71 (2018). https://doi.org/10.15587/1729-4061.2018.126080

    Article  Google Scholar 

  15. Maurer, C., Commerell, W., Hintennach, A., Jossen, A.: Capacity recovery effect in lithium sulfur batteries for electric vehicles. World Electr. Veh. J. 9(2), 34 (2018). https://doi.org/10.3390/wevj9020034

    Article  Google Scholar 

  16. Martinez-Laserna, E., Herrera, V.I., Gandiaga, I., Sarasketa-Zabala, E., Gaztañaga, H.: Li-ion battery lifetime model’s influence on the economic assessment of a hybrid electric bus’s operation. World Electr. Veh. J. 9(2), 28 (2018). https://doi.org/10.3390/wevj9020028

    Article  Google Scholar 

  17. Chen, Z., Liu, W., Yang, Y., Chen, W.: Online energy management of plug-in hybrid electric vehicles for prolongation of all-electric range based on dynamic programming. Math. Probl. Eng. 2015, 1–11 (2015). https://doi.org/10.1155/2015/368769

    Article  Google Scholar 

  18. Aleksandrov, E.E., Epifanov, V.V., Medvedev, N.G., Ustinenko, A.V.: Tjagovo-skorostnye harakteristiki bystrohodnyh gusenichnyh i polnoprivodnyh kolesnyh mashin [Trailer-speed characteristics of high-speed track and full-wheel drive wheeled vehicles]. Kharkiv, NTU “KhPI” publ. (2007)

    Google Scholar 

  19. Gnatov, A.V., Argun, Shh.V., Trunova, I.S.: Teoriya elektropryvodu transportnyh zasobiv: pidruchnyk [The theory of electric vehicles: a textbook]/Kharkiv, Kharkiv National Automobile and Highway University publ. (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Volontsevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Volontsevich, D., Strimovskyi, S., Veretennikov, I., Sivykh, D., Karpov, V. (2022). The Choice of the Electric Energy Storage Device Type for the Hybrid Power Drive of Military Wheeled Vehicles. In: Machado, J., Soares, F., Trojanowska, J., Yildirim, S. (eds) Innovations in Mechatronics Engineering. icieng 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79168-1_19

Download citation

Publish with us

Policies and ethics