Skip to main content

Parameterized State Feedback Control Applied to the 1st Degree of Freedom of a Cylindric Pneumatic Robot

  • Conference paper
  • First Online:
Innovations in Mechatronics Engineering (icieng 2021)

Abstract

This paper addresses a gain-schedule trajectory controller applied to the first degree of freedom of a pneumatic five-degree cylindrical robot. The proposed control law is based on pole placement and state feedback techniques associated with a continuous gain-schedule scheme. Its gains are parameterized with respect to the trajectory-dependent mass moment of inertia of the manipulator with relation to its rotation axis. Therefore, the value of the equivalent translational inertia to be moved by the first degree of freedom actuator is calculated on line and used to update the gain set of the controller. As consequence, the poles of the closed-loop system remain unaltered, which results in small performance losses due to payload variations. Performance enhancement is verified by means of experimental results of position trajectory errors for the controlled system considering invariant and variable equivalent mass applied to the 1st DOF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saravanakumar, D., Mohan, B., Muthuramalingam, T.: A review on recent research trends in servo pneumatic positioning systems. Precis. Eng. 49, 481–492 (2017). https://doi.org/10.1016/j.precisioneng.2017.01.014

    Article  Google Scholar 

  2. Najafi, F., Fathi, M., Saadat, M.: Dynamic modelling of servo pneumatic actuators with cushioning. Int. J. Adv. Manuf. Technol. 42(7–8), 757–765 (2009). https://doi.org/10.1007/s00170-008-1635-x

    Article  Google Scholar 

  3. Rouzbeh, B., Bone, G.M., Ashby, G.: High-accuracy position control of a rotary pneumatic actuator. IEEE/ASME Trans. Mechatron. 23(6), 2774–2781 (2018). https://doi.org/10.1109/TMECH.2018.2870177

    Article  Google Scholar 

  4. Bobrow, J.E., McDonell, B.W.: Modeling, identification, and control of a pneumatically actuated, force controllable robot. IEEE Trans. Robot. Autom. 14(5), 732–742 (1998)

    Article  Google Scholar 

  5. Ning, S., Bone, G.M.: High steady-state accuracy pneumatic servo positioning system with PVA/PV control and friction compensation. In: Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, pp. 2824–2829 (2002)

    Google Scholar 

  6. Ren, H.P., Fan, J.T.: Adaptive backstepping slide mode control of pneumatic position servo system. Chin. J. Mech. Eng. 29(5), 1003–1009 (2016). https://doi.org/10.3901/CJME.2016.0412.050

    Article  Google Scholar 

  7. Sobczyk, M.R., Perondi, E.A., Suzuki, R.: Feedback linearization control with friction compensation applied to a pneumatic positioning. In: ABCM Symposium Series in Mechatronics, Section II – Control Systems, vol. 5, pp 252–261 (2012)

    Google Scholar 

  8. Sarmanho Jr., C.A.C.: Desenvolvimento de um robô pneumático de 5 graus de Liberdade com controlador não linear com compensação de atrito. Thesis (Ph.D. in Mechanical Engineering), Universidade Federal do Rio Grande do Sul (2014)

    Google Scholar 

  9. Urethane Timing Belts and Pulleys GATES CATALOG. www.http://misbelt.com/wp-content/uploads/2018/01/Mectrol-Belt-Pulley-Catalog_5_11.pdf. Accessed 01 Jan 2018

  10. Virvalo, T.: Designing a pneumatic position servo system. Power Int. 35, 141–147 (1989)

    Google Scholar 

  11. Borges, F.A.P., Perondi, E.A., Sobczyk, M.R., Cunha, M.A.B.: A hydraulic actuator model using feedforward neural networks. In: 25th ABCM International Congress of Mechanical Engineering, Uberlândia, MG, Brazil (2019)

    Google Scholar 

  12. Sobczyk, M.R., Gervini, V.I., Perondi, E.A., Cunha, M.A.B.: A continuous version of the LuGre friction model applied to the adaptive control of a pneumatic servo system. J. Franklin Inst. 353(13), 3021–3039 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos G. Q. Rijo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rijo, M.G.Q., Perondi, E.A., Sobczyk S., M.R., Sarmanho, C.A.C. (2022). Parameterized State Feedback Control Applied to the 1st Degree of Freedom of a Cylindric Pneumatic Robot. In: Machado, J., Soares, F., Trojanowska, J., Yildirim, S. (eds) Innovations in Mechatronics Engineering. icieng 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79168-1_3

Download citation

Publish with us

Policies and ethics