Skip to main content

A Fuzzy Inference Model for Social-Sustainability Production Planning

  • Conference paper
  • First Online:
Advances in Human Factors and System Interactions (AHFE 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 265))

Included in the following conference series:

  • 989 Accesses

Abstract

Production planning is a scheduling process to acquire, utilize, and allocate production resources to specific production activities in the most efficient way, meeting customer expectations. Due to, e.g., climate crisis, customer expectations are changing shift to be more sustainably produced products. Therefore, decision-makers have to adjust economic production planning goals according to social and environmental aspects. However, driven by financial market expectations, most enterprises still consider the economic dimension more important than the other two. Especially the social dimension has been neglect in previous approaches for sustainable production planning. The paper presents a concept of a fuzzy inference model (FIM) to assess the social-sustainability of production programs using expert knowledge. The concept shows the formulation of the FIM using common methods and fuzzy operators from the fuzzy set theory. The FIM determines the sustainability potential to improve the production program. The concept was applied in a case study. For the case study, the FIM has been implemented in a simulation model of a job shop learning factory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbar, M., Irohara, T.: Scheduling for sustainable manufacturing: a review. J. Clean. Prod. 205, 866–883 (2018). https://doi.org/10.1016/j.jclepro.2018.09.100

    Article  Google Scholar 

  2. Al-Sharrah, G., Elkamel, A., Almanssoor, A.: Sustainability indicators for decision-making and optimisation in the process industry: the case of the petrochemical industry. Chem. Eng. Sci. 65(4), 1452–1461 (2010). https://doi.org/10.1016/j.ces.2009.10.015

    Article  Google Scholar 

  3. Bhanot, N., Rao, P.V., Deshmukh, S.G.: An integrated approach for analysing the enablers and barriers of sustainable manufacturing. J. Clean. Prod. 142, 4412–4439 (2017). https://doi.org/10.1016/j.jclepro.2016.11.123

    Article  Google Scholar 

  4. Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit: Umweltbericht der Bundesregierung 2019. Umwelt und Natur als Fundament des sozialen Zusammenhaltes (2019). https://www.bmu.de/download/umweltberichte/. Accessed 14 Oct 2020

  5. Cao, Y., Wang, S., Yi, L., Zhou, J.: A social sustainability assessment model for manufacturing systems based on ergonomics and fuzzy inference system. In: Setchi, R., Howlett, R.J., Liu, Y., Theobald, P. (eds.) Sustainable Design and Manufacturing 2016. SIST, vol. 52, pp. 639–648. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32098-4_54

    Chapter  Google Scholar 

  6. Daly, H.E.: Toward some operational principles of sustainable development. Ecol. Econ. 2(1), 1–6 (1990). https://doi.org/10.1016/0921-8009(90)90010-R

    Article  MathSciNet  Google Scholar 

  7. Deutsche Kommission Elektrotechnik Elektronik Informationstechnik (DKE): Enterprise-control system integration – part 1: models and terminology. CEN 25.040; 35.240.50(62264-1:2013) (2013)

    Google Scholar 

  8. DIN-Normenausschuss Ergonomie (NAErg): Grundsätze der Ergonomie für die Gestaltung von Arbeitssystemen. CEN 13.180(6385:2016–12) (2016)

    Google Scholar 

  9. Elkington, J.: Partnerships fromcannibals with forks: the triple bottom line of 21st-century business. Environ. Qual. Manag. 8(1), 37–51 (1998). https://doi.org/10.1002/tqem.3310080106

    Article  Google Scholar 

  10. Gbededo, M.A., Liyanage, K., Garza-Reyes, J.A.: Towards a life cycle sustainability analysis: a systematic review of approaches to sustainable manufacturing. J. Clean. Prod. 184, 1002–1015 (2018). https://doi.org/10.1016/j.jclepro.2018.02.310

    Article  Google Scholar 

  11. Giret, A., Trentesaux, D., Prabhu, V.: Sustainability in manufacturing operations scheduling: a state of the art review. J. Manuf. Syst. 37, 126–140 (2015). https://doi.org/10.1016/j.jmsy.2015.08.002

    Article  Google Scholar 

  12. Graves, S.C.: Manufacturing planning and control. Massachusetts Institute of Technology (1999)

    Google Scholar 

  13. Hauschild, M.Z., Herrmann, C., Kara, S.: An integrated framework for life cycle engineering. Procedia CIRP 61, 2–9 (2017). https://doi.org/10.1016/j.procir.2016.11.257

    Article  Google Scholar 

  14. Koether, R., Kurz, B., Seidel, U.A.: Betriebsstättenplanung und Ergonomie. Planung von Arbeitssystemen, 1st edn. Carl Hanser Fachbuchverlag, s.l. (2010)

    Google Scholar 

  15. Maslow, A.H.: A theory of human motivation. Psychol. Rev. 50(4), 370–396 (1943). https://doi.org/10.1037/h0054346

    Article  Google Scholar 

  16. Mihelcic, J.R., et al.: Sustainability science and engineering: the emergence of a new metadiscipline. Environ. Sci. Technol. 37(23), 5314–5324 (2003). https://doi.org/10.1021/es034605h

    Article  Google Scholar 

  17. Phillis, Y.A., Kouikoglou, V.S.: Fuzzy Measurement of Sustainability. Nova Science Publishers, New York (2009)

    MATH  Google Scholar 

  18. Ross, T.J.: Fuzzy Logic with Engineering Applications, 3rd edn. Wiley, Chichester (2010)

    Book  Google Scholar 

  19. Siemieniuch, C.E., Sinclair, M.A., deC Henshaw, M.J.: Global drivers, sustainable manufacturing and systems ergonomics. Appl. Ergon. 51, 104–119 (2015). https://doi.org/10.1016/j.apergo.2015.04.018

  20. Sutherland, J.W., et al.: The role of manufacturing in affecting the social dimension of sustainability. CIRP Ann. 65(2), 689–712 (2016). https://doi.org/10.1016/j.cirp.2016.05.003

    Article  Google Scholar 

  21. Suzanne, E., Absi, N., Borodin, V.: Towards circular economy in production planning: challenges and opportunities. Eur. J. Oper. Res. (2020). https://doi.org/10.1016/j.ejor.2020.04.043

    Article  MathSciNet  MATH  Google Scholar 

  22. U.S. Environmental Protection Agency: Sustainable Manufacturing (2017). https://www.epa.gov/sustainability/sustainable-manufacturing. Accessed 14 Feb 2020

  23. World Business Council for Sustainable Development: Sustainable Consumption Facts and Trends. The Business Role Focus Area (2008). https://www.wbcsd.org/Programs/People/Sustainable-Lifestyles/Resources/Sustainable-consumption-facts-trends. Accessed 2 Dec 2020

  24. World Commission on Environment and Development: Our common future. Oxford University Press Oxford Paperbacks (1987)

    Google Scholar 

  25. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  26. Zarte, M., Wermann, J., Heeren, P., Pechmann, A.: Concept, challenges, and learning benefits developing an industry 4.0 learning factory with student projects. In: IEEE 17th International Conference on Industrial Informatics (INDIN), pp. 1133–1138 (2019). https://doi.org/10.1109/INDIN41052.2019.8972065

  27. Zarte, M., Pechmann, A., Nunes, I.L.: Decision support systems for sustainable manufacturing surrounding the product and production life cycle – a literature review. J. Clean. Prod. 219, 336–349 (2019). https://doi.org/10.1016/j.jclepro.2019.02.092

    Article  Google Scholar 

  28. Zarte, M., Pechmann, A., Nunes, I.L.: Fuzzy Inference model for decision support in sustainable production planning processes—a case study. Sustainability 13(3), 1355 (2021). https://doi.org/10.3390/su13031355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Zarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zarte, M., Pechmann, A., Nunes, I.L. (2021). A Fuzzy Inference Model for Social-Sustainability Production Planning. In: Nunes, I.L. (eds) Advances in Human Factors and System Interactions. AHFE 2021. Lecture Notes in Networks and Systems, vol 265. Springer, Cham. https://doi.org/10.1007/978-3-030-79816-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79816-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79815-4

  • Online ISBN: 978-3-030-79816-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics