Skip to main content

Amyotrophic Lateral Sclerosis Disease Progression Presents Difficulties in Brain Computer Interface Use

  • Conference paper
  • First Online:
Advances in Neuroergonomics and Cognitive Engineering (AHFE 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 259))

Included in the following conference series:

  • 1659 Accesses

Abstract

Brain Computer Interface (BCI) systems potentially provide those with disabilities an alternative means to communicate and control their environment, increasing independence and quality of life. The goal of our study was to examine the effect of disease progression on the efficiency of communication using a P300 BCI speller. To address this, BCI data was analyzed from 19 people living with ALS at various stages of disease. Accuracy in word spelling showed significant correlation to ALSFRS-R score, a measure of disease severity and worsening function, with decreased accuracy as the disease progressed. This decrease in accuracy may be attributed to system components and methodology that lead to an increase in fatigue for people with less function, but alternatively may be due to the progressive changes in neural networks as the patient progresses. Adjustments to BCI systems, use of alternative event potentials, or alternative technologies may be necessary to optimize BCI use in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ALS Association. https://www.als.org/understanding-als/what-is-als

  2. Beukelman, D., Fager, S., Nordness, A.: Communication Support for People with ALS. Neurol. Res. Int. 2011, 714693 (2011)

    Google Scholar 

  3. American Congress of Rehabilitation Medicine. Recommendations for use of uniform nomenclature pertinent to patients with severe alterations in consciousness.Arch. Phys. Med. Rehabil. 76, 205–209 (1995)

    Google Scholar 

  4. Brumberg, J.S., Pitt, K.M., MantieKozlowski, A., Burnison, J.D.: Brain-Computer Interfaces for augmentative and alternative communication: a tutorial. Am. J. Speech. Lang. Pathol. 27, 1–12 (2018)

    Article  Google Scholar 

  5. Eyegaze Inc. https://eyegaze.com/users/als/

  6. tobii dynavox. https://www.tobiidynavox.com/products/devices/

  7. McFarland, D.J.: Brain-computer interfaces for amyotrophic lateral sclerosis. Muscle Nerve 61, 702–707 (2020)

    Article  Google Scholar 

  8. Allison, B.Z., Kübler, A., Jin, J.: 30+ years of P300 brain–computer interfaces. Psychophysiology 57, e13569 (2020)

    Article  Google Scholar 

  9. Shih, J.J., Krusienski, D.J., Wolpaw, J.R.: Brain-computer interfaces in medicine. Mayo. Clin. Proc. 87, 268–279 (2012)

    Article  Google Scholar 

  10. Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)

    Article  Google Scholar 

  11. Li, F., et al.: Different contexts in the oddball paradigm induce distinct brain networks in generating the P300. Front. Hum. Neurosci. 12, 520 (2018)

    Article  Google Scholar 

  12. Akram, F., Han, S.M., Kim, T.-S.: An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier. Comput. Biol. Med. 56, 30–36 (2015)

    Article  Google Scholar 

  13. Mugler, E.M., Ruf, C.A., Halder, S., Bensch, M., Kubler, A.: Design and implementation of a P300-based brain-computer interface for controlling an internet browser. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 599–609 (2010)

    Article  Google Scholar 

  14. Curtin, A., Ayaz, H., Liu, Y., Shewokis, P.A., Onaral, B.: A P300-based EEG-BCI for spatial navigation control. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3841–3844 (2012)

    Google Scholar 

  15. Wolpaw, J.R., et al.: Independent home use of a brain-computer interface by people with amyotrophic lateral sclerosis. Neurology 91, e258–e267 (2018)

    Article  Google Scholar 

  16. McCane, L.M., et al.: Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 207–215 (2014)

    Article  Google Scholar 

  17. Ikegami, S., Takano, K., Kondo, K., Saeki, N., Kansaku, K.: A region-based two-step P300-based brain–computer interface for patients with amyotrophic lateral sclerosis. Clin. Neurophysiol. 125, 2305–2312 (2014)

    Article  Google Scholar 

  18. McCane, L.M., et al.: P300-based Brain-Computer Interface (BCI) Event-Related Potentials (ERPs): people with Amyotrophic Lateral Sclerosis (ALS) vs age-matched controls. Clin. Neurophysiol. 126, 2124–2131 (2015)

    Article  Google Scholar 

  19. Käthner, I., Kübler, A., Halder, S.: Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state. J. Neuroeng. Rehabil. 12, 1–11 (2015)

    Article  Google Scholar 

  20. Holz, E.M., Botrel, L., Kaufmann, T., Kübler, A.: Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Arch. Phys. Med. Rehabil. 96, S16–S26 (2015)

    Article  Google Scholar 

  21. Pasqualotto, E., et al.: Usability and workload of access technology for people with severe motor impairment: a comparison of brain-computer interfacing and eye tracking. Neurorehabil. Neural Repair 29, 950–957 (2015)

    Article  Google Scholar 

  22. Muscular Dystrophy Association (MDA). https://www.mda.org/disease/amyotrophic-lateral-sclerosis/diagnosis

  23. Atassi, N., et al.: The PRO-ACT database design, initial analyses, and predictive features. Neurology 83, 1719–1725 (2014)

    Article  Google Scholar 

  24. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004)

    Article  Google Scholar 

  25. Jurcak, V., Tsuzuki, D., Dan, I.: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34, 1600–1611 (2007)

    Article  Google Scholar 

  26. Townsend, G., et al.: A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin. Neurophysiol. 121, 1109–1120 (2010)

    Article  Google Scholar 

  27. National Center for Adaptive Neurotechnologies. https://www.bci2000.org/mediawiki/index.php/P300_GUI_Guide

  28. Bakker, L.A., Schröder, C.D., van Es, M.A., Westers, P., Visser-Meily, J.M.A., van den Berg, L.H.: Assessment of the factorial validity and reliability of the ALSFRS-R: a revision of its measurement model. J. Neurol. 264, 1413–1420 (2017)

    Article  Google Scholar 

  29. Nijboer, F., et al.: A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin. Neurophysiol. 119, 1909–1916 (2008)

    Article  Google Scholar 

  30. Choularton, S., Dale, R.: User responses to speech recognition errors: consistency of behaviour across domains. In: 10th Australian International Conference on Speech Science & Technology (2004)

    Google Scholar 

  31. Mainsah, B.O., Collins, L.M., Colwell, K.A., Sellers, E.W., Ryan, D.B., Caves, K., Throckmorton, C.S.: Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study. J. Neural Eng. 12, 016013 (2015)

    Article  Google Scholar 

  32. Kellmeyer, P., GrosseWentrup, M., SchulzeBonhage, A., Ziemann, U., Ball, T.: Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing. J. Neural Eng. 15, 041003 (2018)

    Article  Google Scholar 

  33. Kübler, A., Birbaumer, N.: Brain–computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin. Neurophysiol. 119, 2658–2666 (2008)

    Article  Google Scholar 

  34. Rudnicki, S., McVey, A.L., Jackson, C.E., Dimachkie, M.M., Barohn, R.J.: Symptom management and end of life care. Neurol. Clin. 33, 889–908 (2015)

    Article  Google Scholar 

  35. Cipresso, P., et al.: The use of P300-based BCIs in amyotrophic lateral sclerosis: from augmentative and alternative communication to cognitive assessment. Brain Behav. 2, 479–498 (2012)

    Article  Google Scholar 

  36. Volpe, N.J., Simonett, J., Fawzi, A.A., Siddique, T.: Ophthalmic manifestations of amyotrophic lateral sclerosis (An American Ophthalmological Society Thesis). Trans. Am. Opthalmol. Soc. 113, T12 (2015)

    Google Scholar 

  37. Grosse-Wentrup, M.: The elusive goal of BCI-based communication with CLIS-ALS patients. In: 2019 7th International Winter Conference on Brain-Computer Interface (BCI), pp. 1–2 (2019)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the participants, ALS Hope Foundation, and former students who collected the data: J. Moraveck, R. Mareck, M. Chin, T. Montez, D. Richter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Dryden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dryden, E., Sahal, M., Feldman, S., Ayaz, H., Heiman-Patterson, T. (2021). Amyotrophic Lateral Sclerosis Disease Progression Presents Difficulties in Brain Computer Interface Use. In: Ayaz, H., Asgher, U., Paletta, L. (eds) Advances in Neuroergonomics and Cognitive Engineering. AHFE 2021. Lecture Notes in Networks and Systems, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-030-80285-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80285-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80284-4

  • Online ISBN: 978-3-030-80285-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics