Skip to main content

Determining the Optimal Orientation of AM-Parts Based on Native 3D CAD Data

  • Conference paper
  • First Online:
Advances in Manufacturing, Production Management and Process Control (AHFE 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 274))

Included in the following conference series:

  • 1657 Accesses

Abstract

Due to the separation of part design and pre-processing in the industrial context of additive manufacturing, design changes caused by part orientation determination lead to time-consuming iterations. This work provides an approach to determine the optimal part orientation and post-processing surfaces in CAD-Systems, based on native 3D CAD data, to overcome these shortcomings. The authors identified relevant parameters being influenced by part orientation and propose a method to solve the multi-criteria optimization problem of the part orientation. An application example is implemented using the programming language C# and the NX Open API of the CAD-system Siemens NX 12 by vendor Siemens PLM Software is used for validation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pham, D.T., Dimov, S.S., Gault, R.S.: Part orientation in stereolithography. Int. J. Adv. Manuf. Technol. 15, 674–682 (1999)

    Article  Google Scholar 

  2. Alexander, P., Allen, S., Dutta, D.: Part orientation and build cost determination in layered manufacturing. Comput. Aided Des. 30, 343–356 (1998)

    Article  Google Scholar 

  3. Pandey, P.M., Thrimurthulu, K., Reddy, N.V.: Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. Int. J. Prod. Res. 42(19), 4069–4089 (2004). https://doi.org/10.1080/00207540410001708470

    Article  MATH  Google Scholar 

  4. Canellidis, V., Giannatsis, J., Dedoussis, V.: Genetic-algorithm-based multi-objective optimization of the build orientation in stereolithography. Int. J. Adv. Manuf. Technol. 45, 714–730 (2009)

    Article  Google Scholar 

  5. Danjou, S.: Mehrzieloptimierung der Bauteilorientierung für Anwendungen der Rapid-Technologie. Dissertation, Universität Duisburg-Essen (2010)

    Google Scholar 

  6. Danjou, S., Köhler, P.: Ermittlung optimaler Bauteilorientierung zur Verbesserung der Prozessplanung in der CAS/RP-Kette. RTejournal 6 (2009)

    Google Scholar 

  7. Khodaygan, S., Golmohammadi, A.H.: Multi-criteria optimization of the part build orientation (PBO) through a combined meta-modeling/NSGAII/TOPSIS method for additive manufacturing processes. Int. J. Interact. Des. Manuf. (IJIDeM) 12(3), 1071–1085 (2017). https://doi.org/10.1007/s12008-017-0443-7

    Article  Google Scholar 

  8. Qin, Y., Qi, Q., Shi, P., et al.: Automatic determination of part build orientation for laser powder bed fusion. Virtual Phys. Prototyping 16(1), 29–49 (2020). https://doi.org/10.1080/17452759.2020.1832793

    Article  Google Scholar 

  9. Brika, S.E., Zhao, Y.F., Brochu, M., et al.: Multi-objective build orientation optimization for powder bed fusion by laser. J. Manuf. Sci. Eng. 139 (2017)

    Google Scholar 

  10. Rocha, A.M.A.C., Pereira, A.I., Vaz, A.I.F.: Build orientation optimization problem in additive manufacturing. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 669–682. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_47

    Chapter  Google Scholar 

  11. Ahn, D., Kim, H., Lee, S.: Fabrication direction optimization to minimize post-machining in layered manufacturing. Int. J. Mach. Tools Manuf. 47, 593–606 (2007)

    Article  Google Scholar 

  12. Ulu, E., Korkmaz, E., Yay, K., et al.: Enhancing the structural performance of additively manufactured objects through build orientation optimization. J. Mech. Des. 137 (2015)

    Google Scholar 

  13. Zhang, Y., Bernard, A., Gupta, R.K., et al.: Feature based building orientation optimization for additive manufacturing. Rapid Prototyping J. 22, 358–376 (2016)

    Article  Google Scholar 

  14. Di Angelo, L., Di Stefano, P., Guardiani, E.: Search for the optimal build direction in additive manufacturing technologies: a review. JMMP 4, 71 (2020)

    Article  Google Scholar 

  15. Frank, D., Fadel, G.: Expert system-based selection of the preferred direction of build for rapid prototyping processes. J. Intell. Manuf. 6, 339–345 (1995)

    Article  Google Scholar 

  16. Zhang, Y., Bernard, A.: Using AM feature and multi-attribute decision making to orientate part in Additive Manufacturing. In: da Silva Bártolo, P., Lemos, A., de Pereira, A., et al. (eds.) High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping, vol. 15, pp. 411–416. CRC Press (2013)

    Google Scholar 

  17. Kirchner, K., Jäschke, H., Franke, H.-J., et al.: Mechanisch-technologische Eigenschaften generativ gefertigter Bauteile in Abhängigkeit von der Bauteilorientierung. RTejournal 7 (2010)

    Google Scholar 

  18. Grabowski, H., Anderl, R., Polly, A.: Integriertes Produktmodell, 1. Aufl. Entwicklungen zur Normung von CIM. Beuth, Berlin (1993)

    Google Scholar 

  19. Zhang, Y., Bernard, A.: An integrated decision-making model for multi-attributes decision-making (MADM) problems in additive manufacturing process planning. Rapid Prototyping J. 20, 377–389 (2014)

    Article  Google Scholar 

  20. Cheng, W., Fuh, J., Nee, A., et al.: Multi-objective optimization of part-building orientation in stereolithography. Rapid Prototyping J. 1, 12–23 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slim Krückemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krückemeier, S., Staudter, G., Anderl, R. (2021). Determining the Optimal Orientation of AM-Parts Based on Native 3D CAD Data. In: Trzcielinski, S., Mrugalska, B., Karwowski, W., Rossi, E., Di Nicolantonio, M. (eds) Advances in Manufacturing, Production Management and Process Control. AHFE 2021. Lecture Notes in Networks and Systems, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-030-80462-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80462-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80461-9

  • Online ISBN: 978-3-030-80462-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics