Skip to main content

Reduction of Human Effort in Technical Cleanliness Inspection Through Advanced Image Processing Approaches

  • Conference paper
  • First Online:
Advances in Manufacturing, Production Management and Process Control (AHFE 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 274))

Included in the following conference series:

  • 1694 Accesses

Abstract

The inspection of component surfaces for size, number and type of particulate contamination is carried out using the standard cleanliness analysis described in ISO 16232 and VDA 19.1. Currently, the detection, measurement, counting and classification of particles is performed by an analysis-system comprised of an incident light microscope and corresponding software evaluation followed by manual results review. We propose advanced image processing algorithms to enhance the particle recognition for the technical cleanliness inspection. This includes extended-depth-of-field (EDoF), shape-from-focus (SFF) and periodic noise removing. Furthermore, a robust image stitching algorithm is introduced. Combined, these algorithms enable a higher degree of automation and enhance the information received by the human examiner. This leads to a significant reduction of human interaction and intervention during the technical cleanliness inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO 16232 Road vehicles—Cleanliness of components and systems. Véhicules routiers — Propreté des composants et des systèmes, 1. Aufl. International Organization for Standardization, Vernier, Genf, Schweiz (2018)

    Google Scholar 

  2. Zwinkau, R., Frentrup, S., Möhle, R., Deuse, J.: Automatic particle classification through deep learning approaches for increasing productivity in the technical cleanliness laboratory. In: Nunes, I.L. (ed.) AHFE 2019. AISC, vol. 959, pp. 34–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-20040-4_4

    Chapter  Google Scholar 

  3. Zwinkau, R.: Adaption von Verfahren der Bilderkennung auf die Regelung partikelsensibler Produktionssysteme, 1. Aufl. Schriftenreihe Industrial Engineering, Band 26. Shaker Verlag, Düren (2019)

    Google Scholar 

  4. Foster, J., Richards, F.B.: The gibbs phenomenon for piecewise-linear approximation. Am. Math. Monthly 98(1), 47–49 (1991). https://doi.org/10.1080/00029890.1991.11995703

    Article  MathSciNet  MATH  Google Scholar 

  5. Aguet, F., Van De Ville, D., Unser, M.: Model-based 2.5-d deconvolution for extended depth of field in brightfield microscopy. IEEE Trans. Image Process. 17(7), 1144–1153 (2008). https://doi.org/10.1109/TIP.2008.924393

    Article  MathSciNet  Google Scholar 

  6. Pertuz, S., Puig, D., Garcia, M.A., Fusiello, A.: Generation of all-in-focus images by noise-robust selective fusion of limited depth-of-field images. IEEE Trans. Image Process. 22(3), 1242–1251 (2013). https://doi.org/10.1109/TIP.2012.2231087

    Article  MathSciNet  MATH  Google Scholar 

  7. Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003). https://doi.org/10.1016/S0262-8856(03)00137-9

    Article  Google Scholar 

  8. Billiot, B., Cointault, F., Journaux, L., Simon, J.-C., Gouton, P.: 3D image acquisition system based on shape from focus technique. Sensors 13(4), 5040–5053 (2013). https://doi.org/10.3390/s130405040

    Article  Google Scholar 

  9. Alcantarilla, P., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: Burghardt, T., Damen, D., Mayol-Cuevas, W., Mirmehdi, M. (eds.) Proceedings of the British Machine Vision Conference 2013, pp. 13.1–13.11. British Machine Vision Association (2013)

    Google Scholar 

  10. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  11. Tareen, S.A.K., Saleem, Z.: A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK Invent, innovate and integrate socioeconomics development. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies - iCoMET 2018, 3–4 March 2018, pp. 1–10. IEEE, Piscataway (2018)

    Google Scholar 

  12. Pertuz, S., Puig, D., Garcia, M.A.: Analysis of focus measure operators for shape-from-focus. Pattern Recogn. 46(5), 1415–1432 (2013). https://doi.org/10.1016/j.patcog.2012.11.011

    Article  MATH  Google Scholar 

  13. Malik, A.S., Choi, T.-S.: Consideration of illumination effects and optimization of window size for accurate calculation of depth map for 3D shape recovery. Pattern Recogn. 40(1), 154–170 (2007). https://doi.org/10.1016/j.patcog.2006.05.032

    Article  MATH  Google Scholar 

  14. Mahmood, M.T., Majid, A., Choi, T.-S.: Optimal depth estimation by combining focus measures using genetic programming. Inf. Sci. 181(7), 1249–1263 (2011). https://doi.org/10.1016/j.ins.2010.11.039

    Article  Google Scholar 

  15. Nayar, S.K., Nakagawa, Y.: Shape from focus. IEEE Trans. Pattern Anal. Mach. Intell. 16(8), 824–831 (1994). https://doi.org/10.1109/34.308479

    Article  Google Scholar 

  16. Bajcsy, P., Chalfoun, J., Simon, M.: Web Microanalysis of Big Image Data. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63360-2

    Book  Google Scholar 

  17. Kumar, R., Anandan, P., Irani, M., Bergen, J., Hanna, K.: Representation of scenes from collections of images Representation of visual scenes. In: Workshop: Papers. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  18. Kuglin, C.D., Hines, D.C.: The phase correlation image alignment method. In: Proceedings of the IEEE International Conference on Cybernetics and Society. IEEE Press, Piscataway (1975)

    Google Scholar 

  19. Chalfoun, J., et al.: MIST: accurate and scalable microscopy image stitching tool with stage modeling and error minimization. Sci Rep 7(1), 4988 (2017). https://doi.org/10.1038/s41598-017-04567-y

    Article  Google Scholar 

  20. Hoare, C.A.R.: Algorithm 65: find. Commun. ACM 4(7), 321–322 (1961). https://doi.org/10.1145/366622.366647

    Article  Google Scholar 

  21. Yu, Y., Peng, H.: Automated high speed stitching of large 3D microscopic images. In: 2011 IEEE International Symposium 3/30/2011, pp. 238–241 (2011)

    Google Scholar 

  22. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–48 (1956). https://doi.org/10.1090/S0002-9939-1956-0078686-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 4th edn. Pearson, New York (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorben Panusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panusch, T., Möhle, R., Zwinkau, R., Deuse, J. (2021). Reduction of Human Effort in Technical Cleanliness Inspection Through Advanced Image Processing Approaches. In: Trzcielinski, S., Mrugalska, B., Karwowski, W., Rossi, E., Di Nicolantonio, M. (eds) Advances in Manufacturing, Production Management and Process Control. AHFE 2021. Lecture Notes in Networks and Systems, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-030-80462-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80462-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80461-9

  • Online ISBN: 978-3-030-80462-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics