Skip to main content

Variational Method for Solving the Time-Fractal Heat Conduction Problem in the Claydite-Block Construction

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education (ICCSEEA 2022)

Abstract

Mathematical models of the heat conduction problem in the claydite-block construction with taking into account the fractal structure of the material is constructed. Integro-differentiation apparatus of fractional order to take into account the fractal structure of the material was used. The variational formulation of the problem was constructed. The variational method for obtaining an approximate solution of the considered problem was proposed. The results of the numerical experiments of studying the thermal conductivity of claydite-block construction depending on the time, wall thickness and materials of different fractions were obtained. Analyzing the founded distributions of temperature fields allows us to more accurately reflect the real speed of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M.: Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. Math. Comput. 87, 1821–1857 (2018). https://doi.org/10.1090/mcom/3276

    Article  MathSciNet  MATH  Google Scholar 

  2. Boffi, D.: Finite Element Methods and Applications. Springer Series in Computational Mathematics, p. 575 (2013)

    Google Scholar 

  3. Cai, M., Li, C.: Numerical approaches to fractional integrals and derivatives: a review. Mathematics 8, 43 (2020). https://doi.org/10.3390/math8010043

    Article  Google Scholar 

  4. Diethelm, K., Garrappa, R., Stynes, M.: Good (and not so good) practices in computational methods for fractional calculus. Mathematics 8, 324 (2020). https://doi.org/10.3390/math8030324

    Article  Google Scholar 

  5. Edelman, M.: Dynamics of nonlinear systems with power-law memory. Handbk. Fraction. Calculus Appl.: Appl. Phys. A, 103–132 (2019). https://doi.org/10.1515/9783110571707-005

  6. Falade, K.I., Tiamiyu, A.T.: Numerical solution of partial differential equations with fractional variable coefficients using new iterative method (NIM). IJMSC 6(3), 12–21 (2020). https://doi.org/10.5815/ijmsc.2020.03.02

  7. Ford, N.J., Morgado, M.L., Rebelo, M.: A nonpolynomial collocation method for fractional terminal value problems. J. Comput. Appl. Math. 275, 392–402 (2015). https://doi.org/10.1016/j.cam.2014.06.013

    Article  MathSciNet  MATH  Google Scholar 

  8. Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6, 16 (2018). https://doi.org/10.3390/math6020016

    Article  MATH  Google Scholar 

  9. Hilfer, R., Luchko, Y., Tomovski, Z.: Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal (12), 299–318 (2009)

    Google Scholar 

  10. Hinze, M., Schmidt, A., Leine, R.I.: Numerical solution of fractional order ordinary differential equations using the reformulated infinite state representation. Fract. Calc. Appl. Anal. 22, 1321–1350 (2019). https://doi.org/10.1515/fca-2019-0070

  11. Ismail, M., Saeed, U., Alzabut, J., Rehman, M.: Approximate solutions for fractional boundary value problems via green-CAS wavelet method. Mathematics 7, 1164 (2019). https://doi.org/10.3390/math7121164

    Article  Google Scholar 

  12. Kelly, J.F., Sankaranarayanan, H., Meerschaert, M.M.: Boundary conditions for two-sided fractional diffusion. J. Comput. Phys. 376, 1089–1107 (2019). https://doi.org/10.1016/j.jcp.2018.10.010

    Article  MathSciNet  MATH  Google Scholar 

  13. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier (2006)

    Google Scholar 

  14. Kochubei, A.N.: Equations with general fractional time derivatives. Cauchy problem. In: Handbook of Fractional Calculus with Applications, vol. 2: Fractional Differential Equations, pp. 223–234 (2019). https://doi.org/10.1515/97831105716620-011

  15. Lischke, A., Zayernouri, M., Zhang, Z.: Spectral and spectral element methods for fractional advection-diffusion-reaction equations. In: Karniadakis, G.E. (ed.) Handbook of Fractional Calculus with Applications, vol. 3: Numerical Methods, pp. 157–183 (2019). https://doi.org/10.1515/9783110571684-006

  16. Luchko, Y., Yamamoto, M.: The general fractional derivative and related fractional differential equations. Mathematics 8(12), 2115 (2020). https://doi.org/10.3390/math8122115

  17. Madhu, J., Maneesha, G.: Design of fractional order recursive digital differintegrators using different approximation techniques. IJISA 12(1), 33–42 (2020). https://doi.org/10.5815/ijisa.2020.01.04

    Article  Google Scholar 

  18. Pezza, L., Pitolli, F.: A multiscale collocation method for fractional differential problems. Math. Comput. Simul. 147, 210–219 (2018). https://doi.org/10.1016/j.matcom.2017.07.005

    Article  MathSciNet  MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press (1999)

    Google Scholar 

  20. Povstenko, Y.: Fractional Thermoelasticity. Springer International Publishing, Cham, Heidelberg, New York, Dordrecht, London (2015). https://doi.org/10.1007/978-3-319-15335-3

  21. Rituparna, P., Uttam, G.h., Susmita, S.: Application of memory effect in an inventory model with price dependent demand rate during shortage. IJEME 9(3), pp. 51–64 (2019). https://doi.org/10.5815/ijeme.2019.03.05

  22. Shymanskyi, V., Protsyk, Y.: Simulation of the heat conduction process in the claydite-block construction with taking into account the fractal structure of the material. In: XIII-th International Scientific and Technical Conference; Computer Science and Information Technologies, CSIT-2018, pp. 151–154. https://doi.org/10.1109/STC-CSIT.2018.8526747

  23. Shymanskyi, V., Sokolovskyy, Ya.: Finite element calculation of the linear elasticity problem for biomaterials with fractal structure. Open Bioinform. J. 14(1), 114–122. https://doi.org/10.2174/18750362021140100114

  24. Shymanskyi, V., Sokolovskyy, Ya.: Variational formulation of viscoelastic problem in biomaterials with fractal structure. CEUR Workshop Proc. 2753, 360–369 (2020)

    Google Scholar 

  25. Sokolovskyy, Y., Levkovych, M., Sokolovskyy, I.: The study of heat transfer and stress-strain state of a material, taking into account its fractal structure. Math. Model. Comput. 7(2), 400–409 (2020). https://doi.org/10.23939/mmc2020.02.400

    Article  Google Scholar 

  26. Tarasov, V.E.: General fractional dynamics. Mathematics 9(13), 1464 (2021). https://doi.org/10.3390/math9131464

    Article  Google Scholar 

  27. Tarasov, V.E.: Self-organization with memory. Commun. Nonlinear Sci. Num. Simul. 72, 240–271 (2019). https://doi.org/10.1016/j.cnsns.2018.12.018

  28. Washizu, K.: Variational Methods in Elasticity and Plasticity, 3rd edn. Pergamon Press, New York (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Shymanskyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shymanskyi, V., Sokolovskyy, I., Sokolovskyy, Y., Bubnyak, T. (2022). Variational Method for Solving the Time-Fractal Heat Conduction Problem in the Claydite-Block Construction. In: Hu, Z., Dychka, I., Petoukhov, S., He, M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-031-04812-8_9

Download citation

Publish with us

Policies and ethics