Skip to main content

FSET: Fast Structure Embedding Technique forĀ Self-reconfigurable Modular Robotic Systems

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 654))

  • 501 Accesses

Abstract

The rapid growth in communication technologies has lead to a new generation of robotics called as Modular Robotic System (MRS). The most crucial process in MRS is self-reconfiguration, which is regarded as the major challenge for such technology. Indeed, creating new morphology and behaviors manually is a time-consuming and costly process, especially when dealing with complex structures. In this paper, we have proposed a fast self-reconfiguration technique called FSET, i.e. Fast SET, dedicated to MRSs. Our proposed technique consists mainly in two stages: root selection and morphology formation. The final goal of these stages is to enhance the time cost to get new morphology of the traditional SET algorithm thus, ensure fast self-reconfiguration. The root selection stage selects a small number of modules in order to find the best tree roots that effects the topological conditions that leads to successful of the embedding process or not. The morphology formation stage uses the traditional SET algorithm to calculate the embedding truth table where the initial roots used are taken from the first stage. Finally, we show the efficiency of our mechanism through simulations on real scenario using M-TRAN, in terms providing a fast reconfiguration process in MRS and reducing the energy consumption of modules thus, increasing its lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thalamy, P., Piranda, B., Bourgeois, J.: Distributed self-reconfiguration using a deterministic autonomous scaffolding structure. Ph.D. dissertation, UBFC (2019)

    Google ScholarĀ 

  2. Thakker, R., Kamat, A., Bharambe, S., Chiddarwar, S., Bhurchandi, K.: Rebis-reconfigurable bipedal snake robot. In: 2014 IEEE RSJ International Conference on Intelligent Robots and Systems, Chicago, USA, pp. 309ā€“314 (2014)

    Google ScholarĀ 

  3. Thalamy, P., Piranda, B., Bourgeois, J.: A survey of autonomous self-reconfiguration methods for robot-based programmable matter. Robot. Auton. Syst. 120, 103242 (2019)

    Google ScholarĀ 

  4. Vassilvitskii, S., Yim, M., Suh, J.: A complete, local and parallel reconfiguration algorithm for cube style modular robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 1, pp. 117ā€“122. IEEE (2002)

    Google ScholarĀ 

  5. Murata, S., Yoshida, E., Tomita, K., Kurokawa, H., Kamimura, A., Kokaji, S.: Hardware design of modular robotic system. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113), vol. 3, pp. 2210ā€“2217. IEEE (2000)

    Google ScholarĀ 

  6. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431ā€“441 (2002)

    ArticleĀ  Google ScholarĀ 

  7. Sproewitz, A., et al.: Roombots-towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1126ā€“1132. IEEE (2010)

    Google ScholarĀ 

  8. Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., Kokaji, S.: A distributed method for reconfiguration of a three-dimensional homogeneous structure. Adv. Robot. 13(4), 363ā€“379 (1998)

    ArticleĀ  Google ScholarĀ 

  9. Kotay, K.D., Rus, D.L.: Algorithms for self-reconfiguring molecule motion planning. In: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113), vol. 3, pp. 2184ā€“2193. IEEE (2000)

    Google ScholarĀ 

  10. Unsal, C., Khosla, P.K.: A multi-layered planner for self-reconfiguration of a uniform group of I-cube modules. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), vol. 1, pp. 598ā€“605. IEEE (2001)

    Google ScholarĀ 

  11. Ɯnsal, C., KiliƧƧƶte, H., Khosla, P.K.: A modular self-reconfigurable bipartite robotic system: implementation and motion planning. Auton. Robot. 10(1), 23ā€“40 (2001)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  12. Dewey, D.J., et al.: Generalizing metamodules to simplify planning in modular robotic systems. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1338ā€“1345. IEEE (2008)

    Google ScholarĀ 

  13. Yim, M., Zhang, Y., Lamping, J., Mao, E.: Distributed control for 3D metamorphosis. Auton. Robot. 10(1), 41ā€“56 (2001)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  14. Fitch, R., Butler, Z., Rus, D.: Reconfiguration planning for heterogeneous self-reconfiguring robots. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), vol. 3, pp. 2460ā€“2467. IEEE (2003)

    Google ScholarĀ 

  15. Fitch, R., Butler, Z., Rus, D.: In-place distributed heterogeneous reconfiguration planning. In: Alami, R., Chatila, R., Asama, H. (eds.) Distributed Autonomous Robotic Systems 6, pp. 159ā€“168. Springer, Tokyo (2007). https://doi.org/10.1007/978-4-431-35873-2_16

    ChapterĀ  MATHĀ  Google ScholarĀ 

  16. Fitch, R., McAllister, R.: Hierarchical planning for self-reconfiguring robots using module kinematics. In: Martinoli, A., et al. (eds.) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol. 83, pp. 477ā€“490. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32723-0_34

    ChapterĀ  Google ScholarĀ 

  17. Butler, Z., Rus, D.: Distributed planning and control for modular robots with unit-compressible modules. Int. J. Robot. Res. 22(9), 699ā€“715 (2003)

    ArticleĀ  Google ScholarĀ 

  18. Park, M., Chitta, S., Teichman, A., Yim, M.: Automatic configuration recognition methods in modular robots. Int. J. Robot. Res. 27(3ā€“4), 403ā€“421 (2008)

    ArticleĀ  Google ScholarĀ 

  19. McKay, B.: Nauty userā€™s guide (v2. 4). Computer Science Dept., Australian National University (2007)

    Google ScholarĀ 

  20. Mantzouratos, Y., Tosun, T., Khanna, S., Yim, M.: On embeddability of modular robot designs. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1911ā€“1918. IEEE (2015)

    Google ScholarĀ 

  21. Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Self-reconfigurable modular robot M-TRAN: distributed control and communication. In: Proceedings of the 1st international conference on Robot communication and coordination, pp. 1ā€“7 (2007)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Harb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Majed, A., Harb, H., Nasser, A., Clement, B. (2023). FSET: Fast Structure Embedding Technique forĀ Self-reconfigurable Modular Robotic Systems. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2023. Lecture Notes in Networks and Systems, vol 654. Springer, Cham. https://doi.org/10.1007/978-3-031-28451-9_5

Download citation

Publish with us

Policies and ethics