Skip to main content

Motor Imagery Brain–Computer Interface for RPAS Command and Control

  • Conference paper
  • First Online:
Advances in Human Factors and Systems Interaction (AHFE 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 592))

Included in the following conference series:

Abstract

Nowadays, technology is evolving towards the development of new controlling methods based in signals produced by our brain (Brain Computer Interfaces BCI). Applications of Brian computing Interfaces are also being explored in the field of aeronautics. This paper presents the initial steps of a work focused on the evaluation of brain patterns that occur when an individual excites the brain to perform an action. The final goal of this project is to implement this method in a real time program that is capable of filtering the signals obtained by brain measurement system; treating these signals to obtain the amplitude accumulation at the indicated frequencies and sending the control commands to a RPAS in order to be able to control it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpaw, J., Birbaumer, N., McFarland, D.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

  2. Pfurtscheller, G., Allison, B., Bauernfeind, G., Neuper, N.: The hybrid BCI. Front. Neurosci. 113, 4–30 (2010)

    Google Scholar 

  3. Brunner, C., Birbaumer, N., Blankertz, B.: BNCI Horizon 2020: towards a roadmap for the BCI community. BCI J. (2015)

    Google Scholar 

  4. Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T.M.: Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64(10), 1775–1777 (2005)

    Article  Google Scholar 

  5. Marchetti, M., Priftis, K.: Brain-computer interfaces in amyotrophic lateral sclerosis: a metanalysis. Clin. Neurophysiol. 126(6), 1255–1263 (2015)

    Article  Google Scholar 

  6. Pfurtscheller, G., Guger, C., Neup, C., Krausz, G., Müller, G.: Brain oscillations control hand orthosis in a tetraplegic. Neurosci. Lett. 292(3), 211–214 (2000)

    Article  Google Scholar 

  7. Huang, D., Qiank, D., Fei, W., Jia, X., Chen, O.: Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Trans. Neural Syst. Rehabil. Eng. 20(3), 379–388 (2012)

    Article  Google Scholar 

  8. Perdiki, S., Leeb, R., Williamson, J., Ramsay, A., Tavella, M.: Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller. J. Neural Eng. 11(3), 036003 (2014)

    Article  Google Scholar 

  9. Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H.: Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 473–482 (2007)

    Article  Google Scholar 

  10. Bi, L., He, T., Fan, X.: A driver-vehicle interface based on ERD/ERS potentials and alpha rhythm. In: IEEE International Conference on Systems, Man and Cybernetics Systems, Man and Cybernetics (SMC), San Diego (2014)

    Google Scholar 

  11. Bell, C., Shenoy, P., Chalodhorn, R., Rao, R.: Control of a humanoid robot by a noninvasive brain–computer interface in humans. J. Neural Eng. 5(2), 214 (2008)

    Article  Google Scholar 

  12. LaFleur, K., Cassady, K., Doud, A.: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J. Neural Eng. 10, 4 (2013)

    Article  Google Scholar 

  13. Fricke, T., Zander, T., Gramann, K., Holzapfel, F.: First Pilot-in-the-Loop Experiments on Brain T. Control of Horizontal Aircraft Motion. de Deutscher Luft- und Raumfahrtkongress, Augsburg (2014)

    Google Scholar 

  14. Holzapfel, T., Fricke, T.: Applying Brain Machine Interfaces to Aircraft Control. de The Man Between Automation, Competence and Responsibility (DGLR Report 2014-01), Bon, Special print from M. Grandt and S. Schmerwitz (2014)

    Google Scholar 

  15. Coffey, E., Brouwer, A., Wilschut, E., van Erp, J.: Brain–machine interfaces in space: using spontaneous rather than intentionally generated brain signals. Acta Astronaut. 67, 1–11 (2010)

    Article  Google Scholar 

  16. Ja, P.: The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res. Rev. 50(1), 57–68 (2005)

    Article  Google Scholar 

  17. Pfurtscheller, G., Lopes da Silva, F.: Event-related EEG = MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–2857 (1999)

    Article  Google Scholar 

  18. Vuckovic, O.B.: Using a motor imagery questionnaire to estimate the performance of a brain-computer interface based on object oriented motor imagery. Clin. Neurophysiol. 124(8), 1586–1595 (2013)

    Article  Google Scholar 

  19. Curran, S.M., Stokes, M.J.: Learning to control brain activity: a review of the production and control of EEG components for driving Brain-Computer Interface (BCI) systems. Brain Cognit. 51(3), 326–336 (2003)

    Article  Google Scholar 

  20. Roland, P.E., Larsen, B., Lassen, N.A., Skinhoj, E.: Supplementary motor area and other cortical areas in organization of voluntary movements in man. J. Neurophysiol. 1, 118–136 (1980)

    Google Scholar 

  21. Wang, Y., Hong, B., Gao, X., Gao, S.: Phase synchrony measurement in motor cortex for classifying single-trial EEG during motor imagery. In: Proceedings of 28th International IEEE EMBS Conference, New York, USA (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Arnaldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Arnaldo, R., Comendador, F.G., Perez, L., Rodriguez, A. (2018). Motor Imagery Brain–Computer Interface for RPAS Command and Control. In: Nunes, I. (eds) Advances in Human Factors and Systems Interaction. AHFE 2017. Advances in Intelligent Systems and Computing, vol 592. Springer, Cham. https://doi.org/10.1007/978-3-319-60366-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60366-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60365-0

  • Online ISBN: 978-3-319-60366-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics