Skip to main content

Recognition of Physiotherapeutic Exercises Through DTW and Low-Cost Vision-Based Motion Capture

  • Conference paper
  • First Online:
Advances in Human Factors and Systems Interaction (AHFE 2017)

Abstract

Telemedicine is a current trend in healthcare. The present study is part of the ePHoRt project, which is a web-based platform for the rehabilitation of patients after hip replacement surgery. To be economically suitable the system is intended to be based on low-cost technologies, especially in terms of motion capture. This is the reason why the Kinect-based motion tracking is chosen. The paper focuses on the automatic assessment of the correctness of the exercises performed by the user. A Dynamic Time Warping (DTW) approach is used to discriminate between correct and incorrect movements. The classification of the movements through a Naïve Bayes classifier shows a very high percentage of accuracy (98.2%). Models are built for each individual and reeducation exercise with only few attributes and the same accuracy. Due to these promising results, the next step will consist of testing the algorithms on patients performing the exercises in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feys, H., De Weerdt, W., Verbeke, G., et al.: Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: a 5-year follow-up study of a randomized trial. Stroke 35(4), 924–929 (2004)

    Article  Google Scholar 

  2. Cramp, M.C., Greenwood, R.J., Gill, M., et al.: Effectiveness of a community-based low intensity exercise programme for ambulatory stroke survivors. Disabil. Rehabil. 32(3), 239–247 (2010)

    Article  Google Scholar 

  3. Mavroidis, C., Nikitczuk, J., Weinberg, B., et al.: Smart portable rehabilitation devices. J. Neuroeng. Rehabil. 2, 18 (2005). doi:10.1186/1743-0003-2-18

    Article  Google Scholar 

  4. Holden, M.K., Dyar, T.A., Dayan-Cimadoro, L.: Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 36–42 (2007)

    Article  Google Scholar 

  5. Rand, D., Kizony, R., Weiss, P.T.L.: The Sony PlayStation II EyeToy: low-cost virtual reality for use in rehabilitation. J. Neurol. Phys. Ther. 32(4), 155–163 (2008)

    Article  Google Scholar 

  6. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3D tracking of hand articulations using Kinect. In: Proceedings of the 22nd British Machine Vision Conference. University of Dundee (2011)

    Google Scholar 

  7. Gameiro, J., Cardoso, T., Rybarczyk, Y.: Kinect-sign: teaching sign language to listeners through a game. In: Rybarczyk, Y., et al. (eds.) Innovative and Creative Developments in Multimodal Interaction Systems, pp. 141–159. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Rybarczyk, Y., Santos, J.: Motion integration in direction perception of biological motion. In: Proceedings of the 4th Asian Conference on Vision, Matsue (2006)

    Google Scholar 

  9. Dutta, T.: Evaluation of the Kinect sensor for 3-D kinematic measurement in the workplace. Appl. Ergon. 43, 645–649 (2012)

    Article  Google Scholar 

  10. Brook, G., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., Rochester, L.: Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 39(4), 1062–1068 (2014)

    Article  Google Scholar 

  11. Rybarczyk, Y.: 3D markerless motion capture: a low cost approach. In: Proceedings of the 4th World Conference on Information Systems and Technologies, Recife (2016)

    Google Scholar 

  12. Remondino, F., Roditakis, A.: 3D reconstruction of human skeleton from single images or monocular video sequences. In: Proceedings of Joint Pattern Recognition Symposium, Magdeburg (2003)

    Google Scholar 

  13. Krukowski, A., Vogiatzaki, E., Rodríguez, J.M.: Patient Health Record (PHR) system. In: Maharatna, K., et al. (eds.) Next Generation Remote Healthcare: A Practical System Design Perspective, Chap. 6. Springer, New York (2013)

    Google Scholar 

  14. Rybarczyk, Y., Deters, J.K., Aladro Gonzalvo, A., Gonzalez, M., Villarreal, S., Esparza, D.: ePHoRt project: a web-based platform for home motor rehabilitation. In: Proceedings of the 5th World Conference on Information Systems and Technologies, Madeira (2017)

    Google Scholar 

  15. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 46(3), 33 (2014). doi:10.1145/249962

    Article  Google Scholar 

  16. Chen, L., Hoey, J., Nugent, C.D., et al.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 790–808 (2012)

    Article  Google Scholar 

  17. Choudhury, T., Consolvo, S., Harrison, B., et al.: The mobile sensing platform: an embedded activity recognition system. IEEE Pervasive Comput. 7(2), 32–41 (2008)

    Article  Google Scholar 

  18. Galveia, B., Cardoso, T., Santos, V., Rybarczyk, Y.: Towards the creation of a gesture library. EAI Endorsed Trans. Creat. Technol. 15(3), e3 (2015)

    Article  Google Scholar 

  19. Jost, H.: Kinect-based approach to upper limb rehabilitation. In: Vogiatzaki, E., Krukowski, A. (eds.) Modern Stroke Rehabilitation Through e-Health-Based Entertainment, pp. 169–193. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  20. Antón, D., Goñi, A., Illarramendi, A.: Exercise recognition for Kinect-based telerehabilitation. Meth. Inf. Med. 54(2), 145–155 (2015)

    Article  Google Scholar 

  21. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

    Article  Google Scholar 

  22. Kunze, K., Barry, M., Heinz, E.A., et al.: Towards recognizing tai chi: an initial experiment using wearable sensors. In: Proceedings of the 3rd International Forum on Applied Wearable Computing. Bremen (2006)

    Google Scholar 

  23. Banos, O., Damas, M., Pomares, H., et al.: Daily living activity recognition based on statistical feature quality group selection. Expert Syst. Appl. 39(9), 8013–8021 (2012)

    Article  Google Scholar 

  24. Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M.: Activity recognition and monitoring using multiple sensors on different body positions. In: Proceedings of International Workshop on Wearable and Implantable Body Sensor Networks, Cambridge (2006)

    Google Scholar 

  25. Parkka, J., Ermes, M., Korpipaa, P., et al.: Activity classification using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 10(1), 119–128 (2006)

    Article  Google Scholar 

  26. Besson, P., Richiardi, J., Bourdin, C., Bringoux, L., Mestre, D.R., Vercher, J.L.: Bayesian networks and information theory for audio-visual perception modeling. Biol. Cybern. 103(3), 213–226 (2010)

    Article  MATH  Google Scholar 

  27. Rybarczyk, Y., Zalakeviciute, R.: Machine learning approach to forecasting urban pollution: a case study of Quito, Ecuador. In: Proceedings of IEEE Ecuador Technical Chapters Meeting, Guayaquil (2016)

    Google Scholar 

  28. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

    Google Scholar 

  29. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: 11th Conference on Uncertainty in Artificial Intelligence, San Mateo (1995)

    Google Scholar 

  30. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Rybarczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Rybarczyk, Y. et al. (2018). Recognition of Physiotherapeutic Exercises Through DTW and Low-Cost Vision-Based Motion Capture. In: Nunes, I. (eds) Advances in Human Factors and Systems Interaction. AHFE 2017. Advances in Intelligent Systems and Computing, vol 592. Springer, Cham. https://doi.org/10.1007/978-3-319-60366-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60366-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60365-0

  • Online ISBN: 978-3-319-60366-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics