Skip to main content

A Domotics Control Tool Based on MYO Devices and Neural Networks

  • Conference paper
  • First Online:
Advances in Human Factors and Ergonomics in Healthcare and Medical Devices (AHFE 2017)

Abstract

The automation of spaces has become a recurrent theme in current affairs due to the need to improve comfort, quality of life and facilitate work for the human being. Thus, this article proposes an intelligent system that allows controlling devices wirelessly in a domestic environment in a simple and safe way. Our system is based on the recognition of different gestures that user makes with his arm, using the bracelet MYO of the company Thalmic Labs. The bracelet consists of 8 electrodes, an accelerometer and a gyroscope. The implementation of the system is done through a wireless data collection classification module. The communication system is made up with ZigBee modules, which control the electrical and electronic devices in the home. In order to perform the recognizing and classification of electromyography (EMG) signals, an artificial neural network model based on supervised learning has used. This work specifies the procedure that we have followed to extract the characteristics of received signals, the training phase of learning system, and an explanation of used algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bustinza, M.S., Ccopa, L.P., Maldonado, D.A., Perca, E.C.: Adquisición, parametrización y clasificación de patrones de señales mioeléctricas para el control de movimiento de un exoesqueleto que asiste la bipedestación. IEEE (2016)

    Google Scholar 

  2. Silva, E.C., Clua, E.W., Montenegro, A.A.: Sensor data fusion for full arm tracking using Myo Armband and leap motion. In: 14th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pp. 12–134 (2015)

    Google Scholar 

  3. Ploengpit, Y., Phienthrakul, T.: Rock-paper-scissors with Myo Armband pose detection. In: International Computer Science and Engineering Conference (ICSEC), pp. 1–5 (2016)

    Google Scholar 

  4. Villarejo, J.: Detección de la intención de movimiento durante la marcha a partir de señales electromiográficas (2011)

    Google Scholar 

  5. Betancourt, G., Suárez, E.G., Franco, J.F.: Reconocimiento de patrones de movimiento a partir de señales electromiográficas (2004)

    Google Scholar 

  6. Park, S.-H., Lee, S.-P.: EMG pattern recognition based on artificial intelligence techniques. IEEE Trans. Rehabil. Eng. 6, 400–405 (1998)

    Article  Google Scholar 

  7. Mendoza, L.E., Peña, J., Muñoz-Bedoya, L.A., Velandia-Villamizar, H.J.: Procesamiento de señales provenientes del habla subvocal usando Wavelet Packet y Redes Neuronales. TecnoLógicas 655–667 (2013)

    Google Scholar 

  8. Chipana, M.A.: Clasificacion texturas mediante redes neuronales. Revista de Informacion, Tecnologia y Sociedad, p. 62 (2009)

    Google Scholar 

  9. Romo, H.A., Realpe, J.C., Jojoa, P.E.: Análisis de señales EMG superficiales y su aplicación en control de prótesis de mano. Avances en Sistemas e informatica, p. 4 (2007)

    Google Scholar 

  10. Frutos, D.T., Morales, N.R., Rodriguez, J.G., Zahira, J.F., Perez, L.R.: Clasificación de señales electromiograf\́ias mediante la configuración de una Red Neurona Artificial. CULCyT (2016)

    Google Scholar 

  11. Hargrove, L.J., Englehart, K., Hudgins, B.: A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans. Biomed. Eng. 54, 847–853 (2007)

    Article  Google Scholar 

  12. Englehart, K., Hudgins, B., Parker, P.A., Stevenson, M.: Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Phys. 21, 431–438 (1999)

    Article  Google Scholar 

  13. Leite, E., Várela, L., Pires, V.F., Cardoso, F.D., Pires, A.J., Martins, J.F.: A ZigBee wireless domotic system with Bluetooth interface. In: IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, pp. 2506–2511 (2014)

    Google Scholar 

  14. Alliance, Z.: ZigBee Specification. http://www.zigbee.org/Standards/ZigBeeSmartEnergy/Specification.aspx

  15. Wei, L., Zhang, S., Chen, L., Song, J., Wang, X., Yin, L., He, M.: Wireless temperature monitoring system based on FBG and Zigbee. In: 2016 15th International Conference on Optical Communications and Networks (ICOCN), pp. 1–3 (2016)

    Google Scholar 

  16. Rodríguez-Gracia, D., Piedra-Fernández, J.A., Iribarne, L.: Adaptive Domotic System in Green Buildings. In: 2015 IIAI 4th International Congress on Advanced Applied Informatics, pp. 593–598 (2015)

    Google Scholar 

  17. Nieto, J.O.: Prototipo de Sistema Domótico Habilitado Para Interacción Cerebro-Máquina (2013)

    Google Scholar 

  18. Lozada, M.A., la Rosa R.F.D.: Simulation platform for domotic systems. In: 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), pp. 1–6 (2014)

    Google Scholar 

  19. Contreras, J.C., Campoverde, R.S., Hidalgo, J.C., Tapia, P.E.: Mobile applications using TCP/IP-GSM protocols applied to domotic. In: 2015 XVI Workshop on Information Processing and Control (RPIC), pp. 1–4 (2015)

    Google Scholar 

  20. Choudhury, N., Matam, R., Deka, V.: Priority based ZigBee routing protocol for LR-WPAN. In: 2016 IEEE Students #8217, Technology Symposium (TechSym), pp. 19–201 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Serpa-Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Luna-Romero, S., Delgado-Espinoza, P., Rivera-Calle, F., Serpa-Andrade, L. (2018). A Domotics Control Tool Based on MYO Devices and Neural Networks. In: Duffy, V., Lightner, N. (eds) Advances in Human Factors and Ergonomics in Healthcare and Medical Devices. AHFE 2017. Advances in Intelligent Systems and Computing, vol 590. Springer, Cham. https://doi.org/10.1007/978-3-319-60483-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60483-1_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60482-4

  • Online ISBN: 978-3-319-60483-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics