Skip to main content

Three-Dimensional Tactile Images for Blind People: A Proposition for a Translating Model of Static Two-Dimensional Images

  • Conference paper
  • First Online:
Advances in Design for Inclusion (AHFE 2017)

Abstract

This study aims to propose a model to translate static two-dimensional images into three-dimensional tactile images, to be 3D printed, as a way of transmitting information to blind people. The translating model was created from an exploratory method of the literature, which was divided in three steps: 1. Bibliographical review about tactile images, 3D printed tactile images, 3D printing and a search for an analysis model of static two-dimensional images; 2. Tabulation of data found in the bibliographical review and; 3. Model proposition from data crossing. The result is a proposed translating model divided in 4 levels, containing information from recommendations for the creation of tactile images, and a graphic analysis framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buehler, E., Comrie, N., Hofmann, M., McDonald, S., Hurst, A.: Investigating the implications of 3D printing in special education. ACM Trans. Access. Comput., 8(3) (2016)

    Google Scholar 

  2. Pohlmann, M., Rossi, W.S., Brendler, C.F., Teixeira, F.G., Kindlein Jr., W.: Drawing, virtual modeling and 3D print in the production of didactic models for the teaching-learning of visually impaired students: case study of nanostructured systems. Int. J. Educ. Res. 3(12), 453–466 (2015)

    Google Scholar 

  3. North Carolina State University: The 7 principles of universal design (1997). https://goo.gl/lEzTWt

  4. United Nations: The invisibility of disability (2016). https://goo.gl/kjStcV

  5. Instituto Brasileiro de Geografia e Estatística: Censo demográfico 2010: características gerais da população, religião e pessoas com deficiência (2010). https://goo.gl/RN0B8X

  6. Cybis, W.: Engenharia de usabilidade: uma abordagem ergonômica. Labiutil, Florianópolis (2003)

    Google Scholar 

  7. Amiralian, M.L.T.M.: Compreendendo ocego: uma visão psicanalítica da cegueira por meiode desenhos-estórias. Casa do Psicólogo, São Paulo (1997)

    Google Scholar 

  8. Gruenwald, L.: Impressão 3d: lendo imagensatravés do tato. Um recurso a mais para estudantes com deficiência visual. Revista nacional de reabilitação – reação, n. 98, May/June 2014

    Google Scholar 

  9. Ortí, J., Pitarch, M.J.M., Rubio, J.T.G., Moya, J.Á.M., Cazorla, M.P.: Expresión Gráfica Tangible. In: XII CongresoInternacional Expresión Gráfica Aplicada A La Edificación. Madri(2014)

    Google Scholar 

  10. Sobral, J.E.C., Cavalcanti, A.L.M.S., Everling, M.T.: ‘Ver com as mãos’: atecnologia 3D como recurso educativo para pessoas cegas. In: 15th Ergodesign, Recife (2015)

    Google Scholar 

  11. Flores, Â., Sombrio, G., Takimoto, T., Ulbricht, V.: A aprendizagem de geometria poralunos cegos. In: 7th Conahpa – Congresso Nacional de Ambientes Hipermídia para Aprendizagem, São Luís (2015)

    Google Scholar 

  12. Chicca Jr., N., Castillo, L., Coutinho, S.: A impressão 3Dcontribuindo em projetos de design da informação. In: 7th Congresso Internacional de Design da Informação, Blucher, Brasília, pp. 1355–1360 (2015)

    Google Scholar 

  13. Engelhardt, Y.: The language of graphics: a framework for the analysis of syntax and meaning in maps, charts and diagrams. University of Amsterdam, Amsterdam (2002)

    Google Scholar 

  14. Medline Plus: Blindness and vision loss (2014). https://goo.gl/KEijd6

  15. Amiralian, M.L.T.M.: Deficiência visual: perspectivas na contemporaneidade. Vetor, São Paulo (2009)

    Google Scholar 

  16. Quevedo, S.R.P., Ulbricht, V.R.: Como oscegos aprendem. In: Ulbricht, V.R.; Vanzin,T.; Villarouco, V. (org.) Ambiente virtual de aprendizagem inclusivo. Pandion, Florianópolis (2011)

    Google Scholar 

  17. Kurze, M.: TDraw: a computer-based tactile drawing tool for blind people. In: 2nd ACM Conference on Assistive Technologies, pp. 131–138. ACM, New York (1996)

    Google Scholar 

  18. Sacks, O.: O olhar da mente. Companhia das Letras, São Paulo (2010)

    Google Scholar 

  19. Brasil: Subsecretaria Nacional de Promoção dos Direitos da Pessoa com Deficiência. Comitê de Ajudas Técnicas. Tecnologia assistiva. CORDE, Brasília (2009)

    Google Scholar 

  20. Macedo, C.M.S.: Diretrizes para criação de objetos de aprendizagem acessíveis. Universidade Federal de Santa Catarina, Florianópolis(2010)

    Google Scholar 

  21. Duarte, M.L.B.: Desenho infantil e seu ensinoa crianças cegas: razões e métodos. Insight, Curitiba (2011)

    Google Scholar 

  22. Kastrup, V.: A invenção na ponta dos dedos: a reversão da atenção em pessoas com deficiência visual. Psicol. Rev. 13(1), 69–90 (2007)

    Google Scholar 

  23. Loch, R.E.N.: Cartografia tátil: mapas para deficientes visuais. Portal da Cartografia 1(1), 35–58 (2008)

    MathSciNet  Google Scholar 

  24. Valente, D.: Os diferentes dispositivos de fabricação de imagens e ilustrações táteis e as possibilidades de produção de sentido no contexto perceptivo dos cegos. Revista Educação, Artes e Inclusão 2(1), 59–82 (2009)

    Google Scholar 

  25. BANA - The Braille Authority of North America: Guidelines and standards for tactile graphics (2011). http://www.brailleauthority.org/tg/index.html

  26. Volpato, N. (ed.): Prototipagem rápida: tecnologias e aplicações. Blucher, São Paulo (2013)

    Google Scholar 

  27. Cunico, M.W.M.: Impressoras 3D: o novo meio produtivo. Concep3D, Curitiba (2015)

    Google Scholar 

  28. Gual, J., Puyuelo, M., Lloveras, J.: Threedimensional tactile symbols produced by 3D Printing: Improving the process of memorizing a tactile map key. Br. J. Vis. Impairment 32(3), 263–278 (2014)

    Article  Google Scholar 

  29. Voigt, A., Martens, B.: Development of 3D tactile models for the partially sighted to facilitate spatial orientation. In: 24th eCAADe, Volos, pp. 366–370 (2006)

    Google Scholar 

  30. Celani, G., Milan, L.F.: Tactile scale models: three-dimensional info-graphics for space orientation of the blind and visually impaired. In: 3rd International Conference On Advances Research in Virtual and Rapid Prototyping, Leiria, pp. 801–806 (2007)

    Google Scholar 

  31. Gual-Ortí, J., Puyuelo-Cazorla, M., Lloveras-Macia, J.: Improving tactile map usability through 3D printing techniques: an experiment with new tactile symbols. Cartograph. J. 52(1), 51–57 (2015)

    Article  Google Scholar 

  32. Araulo, M.D.X, Santos, D.M.: Fotografia Tátil: desenvolvimento de modelos táteis a partirde fotografias com a utilização de impressora 3d. Rev. Bras. Des. Informação – Infodesign, São Paulo 12(1), 62–76(2015)

    Google Scholar 

  33. Urbas, R., Pivar, M., Elesini, U.S.: Development of tactile floor plan for the blind and the visually impaired by 3D printing technique. J. Graph. Eng. Des. 7(1), 19–26 (2016)

    Google Scholar 

  34. Ramsamy-Iranah, S., Maguire, M., Gardner, J., Rosunee, S., Kistamah, N.: A comparison of three materials used for tactile symbols to communicate colour to children and young people with visual impairments. Br. J. Vis. Impairment 34(1), 54–71 (2016)

    Article  Google Scholar 

  35. Jovanovic, N., Andelkovic, B., Krstic, H.: The role of 3D printing in the making of models for tactile perception of architectural objects. In: 4th moNGeometrija, Vlasina (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Christie Picelli Sanches .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Sanches, E.C.P., de Macedo, C.M.S., Bueno, J. (2018). Three-Dimensional Tactile Images for Blind People: A Proposition for a Translating Model of Static Two-Dimensional Images. In: Di Bucchianico, G., Kercher, P. (eds) Advances in Design for Inclusion. AHFE 2017. Advances in Intelligent Systems and Computing, vol 587. Springer, Cham. https://doi.org/10.1007/978-3-319-60597-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60597-5_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60596-8

  • Online ISBN: 978-3-319-60597-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics