Skip to main content

The Impact of Human Errors on the Estimation of Uncertainty of Measurements in Water Monitoring

  • Conference paper
  • First Online:
Advances in Human Error, Reliability, Resilience, and Performance (AHFE 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 589))

Included in the following conference series:

Abstract

The main purpose of a physical act of measurement is to enable decisions to be made. In case of an assessment of the chemical status of groundwater body, or assessment of suitability of water for drinking purposes, or possibility of discharges sewage into surface waters, the measurements of physicochemical parameters of water are an indispensable first step. The reliability of the mentioned above decisions heavily depends on knowing the uncertainty of the measurement results. If the uncertainty of measurements is underestimated, for example because the human errors are not taken into account, then erroneous decisions can be made that can have in some cases substantial financial consequences. In this work there are presented examples of human error identification and estimation in measurements made during water monitoring on the base of duplicate control samples (empirical approach) with the use of control charts method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen, D.M. (ed.): Practical Handbook of Ground-water Monitoring. Lewis Publishers, CRC Press, Boca Raton (1991)

    Google Scholar 

  2. Bulska, E.: Metrologia chemiczna (Chemical metrology). Malamut, Warszawa (2008)

    Google Scholar 

  3. Miller, J.N., Miller, J.C.: Statistics and Chemometrics for Analytical Chemistry. Prentice Hall, Harlow (2005)

    MATH  Google Scholar 

  4. Szczepańska, J., Kmiecik, E.: Statystyczna kontrola jakości danych w monitoringu wód podziemnych (Statistical quality control of data in the groundwater monitoring). AGH Publisher, Kraków (1998)

    Google Scholar 

  5. Kuselman, I., Pennecchi, F., Fajgelj, A., Karpov, Y.: Human errors and reliability of test results in analytical chemistry. Accredit. Qual. Assur. 18, 3–9 (2013)

    Article  Google Scholar 

  6. Kuselman, I., Pennecchi, F.: IUPAC/CITAC guide: classification, modeling and quantification of human errors in a chemical analytical laboratory (IUPAC technical report). Pure Appl. Chem. 88(5), 477–515 (2016)

    Article  Google Scholar 

  7. AMCTB No 56. What causes most errors in chemical analysis? Analytical Methods Committee. RSC Publishing. doi:10.1039/c3ay90035e

  8. Ellison, S.L.R., Hardcastle, W.A.: Causes of error in analytical chemistry: results of a web-based survey of proficiency testing participants. Accredit. Qual. Assur. 17, 453–464 (2012)

    Article  Google Scholar 

  9. Hellier, E., Edworthy, J., Lee, A.: An analysis of human error in the analytical measurement task in Chemistry. Int. J. Cogn. Ergon. 5(4), 445–458 (2001)

    Article  Google Scholar 

  10. Joe, J.C., Boring, R.L.: Individual differences in human reliability analysis. INL/CON-14-31940. PREPRINT. PSAM 12 (2014)

    Google Scholar 

  11. Kuselman, I., Fajgelj, A.: Human errors and out of specification test results. Chem. Int. 35(3), 30–31 (2013)

    Google Scholar 

  12. Kuselman, I., Kardash, E., Bashkansky, E., Pennecchi, F., Ellison, S.L.R., Ginsbury, K., Epstein, M., Fajgelj, A., Karpov, Y.: House-of-security approach to measurement in analytical chemistry: quantification of human error using expert judgments. Accredit. Qual. Assur. 18, 459–467 (2013)

    Article  Google Scholar 

  13. Kuselman, I., Goldshlag, P., Pennecchi, F.: Scenarios of human errors and their quantification in multi-residue analysis of pesticides in fruits and vegetables. Accredit. Qual. Assur. 19, 361–369 (2014)

    Article  Google Scholar 

  14. Kuselman, I., Pennecchi, F., Epstein, M., Fajgelj, A., Ellison, S.L.R.: Monte Carlo simulation of expert judgments on human errors in chemical analysis – a case study of ICP-MS. Talanta 130, 462–469 (2014)

    Article  Google Scholar 

  15. Kuselman, I., Pennecchi, F.: Human errors and measurement uncertainty. Metrologia 52, 238–243 (2015)

    Article  Google Scholar 

  16. Kuselman, I., Pennecchi, F., Bich, W., Hibbert, D.B.: Human being as a part of measuring system influencing measurement results. Accredit. Qual. Assur. 21, 421–424 (2016)

    Article  Google Scholar 

  17. Witczak, S., Kania, J., Kmiecik, E.: Katalog wybranych fizycznych i chemicznych wskaźników zanieczyszczeń wód podziemnych i metod ich oznaczania. (Guidebook on selected physical and chemical indicators of groundwater contamination and methods of their determination). Biblioteka Monitoringu Środowiska, Warsaw (2013). http://www.gios.gov.pl/images/dokumenty/raporty/ebook2_20130422.pdf. Accessed Mar 2017

  18. Camões, M.F.: The quality of pH measurements 100 years after its definition. Accredit. Qual. Assur. 14, 521–523 (2009)

    Article  Google Scholar 

  19. Titration errors, http://www.titrations.info/titration-errors. Accessed Mar 2017

  20. Kmiecik, E., Tomaszewska, B., Wątor, K., Bodzek, M., Rajca, M., Tyszer, M.: Implementation of QA/QC program in research related to the membrane processes used in geothermal water treatment. Desalination Water Treat (in press). doi:10.5004/dwt.2017.20604

  21. Nordtest: Handbook for calculation of measurement uncertainty in environmental laboratories. Report TR537, Espoo, Finland (2003)

    Google Scholar 

  22. Nordtest: Uncertainty from sampling – a Nordtest handbook for sampling planners on sampling quality assurance and uncertainty estimation (based upon the Eurachem international guide estimation of measurement uncertainty arising from sampling). Report TR604, Oslo, Norway (2007)

    Google Scholar 

  23. Ramsey, M.H.: Sampling as a source of measurement uncertainty: techniques for quantification and comparison with analytical sources. J. Anal. Atom. Spectrom. 13, 97–104 (1998)

    Article  Google Scholar 

  24. Ramsey, M.H., Thompson, M.: Uncertainty form sampling in the context of fitness for purpose. Accredit. Qual. Assur. 12, 503–513 (2007)

    Article  Google Scholar 

  25. Ramsey, M.H., Thompson, M., Hale, M.: Objective evaluation of the precision requirements for geochemical analysis using robust analysis of variance. J. Geochem. Explor. 44, 23–36 (1992)

    Article  Google Scholar 

  26. Thompson, M., Howarth, R.J.: Duplicate analysis in practice – Part 1. Theoretical approach and estimation of analytical reproducibility. Part 2. Examination of proposed methods and examples of its use. Analyst 101(1206), 690–698, 699–709 (1976)

    Google Scholar 

  27. Thompson, M., Coles, B.J., Douglas, J.K.: Quality control of sampling: proof of concept. Analyst 127, 174–177 (2002)

    Article  Google Scholar 

  28. Szczepańska, J., Kmiecik, E.: Ocena stanu chemicznego wód podziemnych w oparciu o wyniki badań monitoringowych (Assessment of the chemical status of groundwater based on the results of monitoring tests). AGH Publisher, Kraków (2005)

    Google Scholar 

  29. Postawa, A. (ed.): Best practice guide on the sampling and monitoring of metals in drinking water. In: Metals and Related Substances in Drinking Water Series. IWA Publishing, London (2012)

    Google Scholar 

  30. Kmiecik, E.: Analytical procedures for ion quantification supporting water treatment processes. In: Bundschuh, J., Tomaszewska, B. (eds.) Geothermal Water Management. CRC Press, Taylor & Francis Group (in press)

    Google Scholar 

  31. Rostron, P., Ramsey, M.H.: Cost effective, robust estimation of measurement uncertainty from sampling using unbalanced ANOVA. Accredit. Qual. Assur. 17(1), 7–14 (2012)

    Article  Google Scholar 

  32. Kmiecik, E.: Metodyczne aspekty oceny stanu chemicznego wód podziemnych (Methodological aspects of assessing the chemical status of groundwater). AGH Publisher, Kraków (2011)

    Google Scholar 

  33. Drzymała, M.: Chlorowce w wodach kopalnianych GZW i ich wpływ na wody powierzchniowe oraz osady denne zlewni górnej Odry (Chlorides in Upper Silesian Coal Basin mine waters and their impact on surface water and bottom sediments of Upper Odra basin). Doctoral dissertation. AGH-UST (2013)

    Google Scholar 

  34. Dwornik, M., Kmiecik, E., Bebek, M.: Wpływ metod analiz na niepewność oznaczeń chlorowców w wodach powierzchniowych zlewni górnej Odry i w wodach kopalnianych do niej odprowadzanych (Influence of analyses method on uncertainty associated with halogens determination in Upper Odra River Basin surface water and coalmine water inducted to it). Przegl. Geol. 63(10/1), 705–709 (2015)

    Google Scholar 

  35. Kmiecik, E., Podgórni, K.: Ocena wpływu zmiany próbobiorcy na niepewność związaną z opróbowaniem w monitoringu wód podziemnych (Estimation of sampler influence on uncertainty associated with sampling in groundwater monitoring). Geol. Bull. PGI 436(9/1), 253–260 (2009)

    Google Scholar 

  36. Postawa, A., Kmiecik, E., Wątor, K.: Rola osoby próbobiorcy w monitoringu jakości wód przeznaczonych do spożycia (The role of a sampler in drinking water quality monitoring). In: Sozański, M.M. (ed.) Water supply and water quality – present issues PZITS 874 (2010)

    Google Scholar 

  37. Wątor, K., Kmiecik, E., Postawa, A.: Wybrane problemy kontroli jakości w monitoringu wód przeznaczonych do spożycia przez ludzi (Selected aspects of quality control in monitoring of water intended for human consumption). In: Problemy wykorzystania wód podziemnych w gospodarce komunalnej: materiały na XVIII sympozjum naukowo-techniczne pt. Dokumentowanie i eksploatacja małych i średnich ujęć wód podziemnych. Częstochowa, PZIiTS (2010)

    Google Scholar 

  38. Korzec, K., Kmiecik, E., Mika, A., Tomaszewska, B., Wątor, K.: Metodyka opróbowania ujęć wód termalnych – aspekty techniczne (Metodology of thermal water sampling – technical aspects). TPG. Geotermia, Zrównoważony Rozwój 1, 75–87 (2016)

    Google Scholar 

Download references

Acknowledgements

The paper has been prepared under the AGH-UST statutory research grant No. 11.11.140.797.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Kmiecik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Kmiecik, E. (2018). The Impact of Human Errors on the Estimation of Uncertainty of Measurements in Water Monitoring. In: Boring, R. (eds) Advances in Human Error, Reliability, Resilience, and Performance. AHFE 2017. Advances in Intelligent Systems and Computing, vol 589. Springer, Cham. https://doi.org/10.1007/978-3-319-60645-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60645-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60644-6

  • Online ISBN: 978-3-319-60645-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics