Skip to main content

Wind Car Driven by the Magnus Force

  • Conference paper
  • First Online:
ROMANSY 22 – Robot Design, Dynamics and Control

Abstract

A mathematical model of a wind car is introduced. The car is equipped by the Magnus-type horizontal axis wind rotor. The shaft of the rotor is connected by a reduction gear with driving wheels of a vehicle. The wheels move without slipping along the line that is parallel to the wind flow. Steady motions of the vehicle are studied. It is shown that the vehicle can move upwind, as well as downwind faster than the wind. The speed of the vehicle is estimated depending on the transmission gear ratio. The maximal speed is compared with that obtained for different types of wind powered vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lysenko, G.P.: Transport Wind Engines. Lenand, Moscow (2014)

    Google Scholar 

  2. Ehrlich, R.: Renewable Energy: A First Course. CRC Press, Boca Raton (2013)

    Google Scholar 

  3. Akira, I., Kawashim, S., Nishizawa, Y., Ushiyam, I., Komatinovic, N.: A study on Savonius type Magnus wind turbine. In: Europe Premier Wind Energy Event (2007)

    Google Scholar 

  4. Milutinović, M., Čorić, M., Deur, J.: Operating cycle optimization for a Magnus effect-based airborne wind energy system. Energy Convers. Manag. 90, 154–165 (2015)

    Article  Google Scholar 

  5. Lopez, N., Mara, B., Mercado, B., Mercado, L., Pascual, M., Promentilla, M.A.: Design of modified Magnus wind rotors using computational fluid dynamics simulation and multi-response optimization. J. Renew. Sustain. Energy 7(6), 063135 (2015)

    Article  Google Scholar 

  6. Marzuki, O.F., et al.: Magnus wind turbine: the effect of sandpaper surface roughness on cylinder blades. Acta Mech. (2017). https://doi.org/10.1007/s00707-017-1957-6

    Article  Google Scholar 

  7. Richmond-Navarro, G., Calderón-Munoz, W.R., LeBoeuf, R., Castillo, P.: A Magnus wind turbine power model based on direct solutions using the Blade Element Momentum Theory and symbolic regression. IEEE Trans. Sustain. Energy 8(1), 425–430 (2017)

    Article  Google Scholar 

  8. Savonius, S.J.: Rotor adapted to be driven by wind or flowing water. U.S. Patent No. 1697574 A (1929)

    Google Scholar 

  9. Ishkhanyan, M.V., Klimina, L.A., Privalova, O.G.: Autorotation Motions of a Turbine Coursed by the Magnus Effect AIP Conference Proceedings (2018, in press)

    Google Scholar 

  10. Klimina, L., Dosaev, M., Selyutskiy, Y.: Asymptotic analysis of the mathematical model of a wind-powered vehicle. Appl. Math. Model. 46, 691–697 (2017)

    Article  MathSciNet  Google Scholar 

  11. Selyutskiy, Y., Klimina, L., Masterova, A., Hwang, S.-S., Lin, C.-H.: On dynamics of a Savonius rotor-based wind power generator. In: Proceedings of 14th Conference on Dynamical Systems: Theory and Applications (DSTA 2017), The Technical University of Lodz, Poland, vol. 3, pp. 275–284 (2017)

    Google Scholar 

  12. Dosaev, M.Z., Samsonov, V.A., Seliutski, Y.D.: On the dynamics of a small-scale wind power generator. Dokl. Phys. 52(9), 493–495 (2007)

    Article  Google Scholar 

  13. Dosaev, M.Z., Lin, C.-H., Lu, W.-L., Samsonov, V.A., Selyutskii, Y.D.: A qualitative analysis of the steady modes of operation of small wind power generator. J. Appl. Math. Mech. 73(3), 259–263 (2009)

    Article  Google Scholar 

  14. Samsonov, V.A., Dosaev, M.Z., Selyutskiy, Y.D.: Methods of qualitative analysis in the problem of rigid body motion in medium. Int. J. Bifurcat. Chaos 21(10), 2955–2961 (2011)

    Article  MathSciNet  Google Scholar 

  15. Bach, V.G.: Untersuchungen über Savonius-Rotoren und verwandte Strömungsmaschinen. Forschung auf dem Gebiet des Ingenieurwesens A 2(6), 218–231 (1931)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat Dosaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dosaev, M., Ishkhanyan, M., Klimina, L., Privalova, O., Selyutskiy, Y. (2019). Wind Car Driven by the Magnus Force. In: Arakelian, V., Wenger, P. (eds) ROMANSY 22 – Robot Design, Dynamics and Control. CISM International Centre for Mechanical Sciences, vol 584. Springer, Cham. https://doi.org/10.1007/978-3-319-78963-7_25

Download citation

Publish with us

Policies and ethics