Skip to main content

Human-Inspired Balance Control of a Humanoid on a Rotating Board

  • Conference paper
  • First Online:
Advances in Human Factors in Robots and Unmanned Systems (AHFE 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 784))

Included in the following conference series:

Abstract

We present a stability analysis of the upright stance of a model of a humanoid robot balancing on a rotating board and driven by a human-inspired control strategy. The humanoid-board system is modeled as a triple inverted pendulum actuated by torques at the board’s hinge, ankle joint, and hip joint. The ankle and hip torques consider proprioceptive and vestibular angular information and are affected by time delays. The stability regions in different parameter’ spaces are bounded by pitchfork and Hopf’s bifurcations. It is shown that increasing time delays do not affect the pitchfork but they shrink the Hopf bifurcations. Moreover, the human-inspired control strategy is able to control the upright stance of a humanoid robot in the presence of time delays. However, more theoretical and experimental studies are necessary to validate the present results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moran, M.E.: The da Vinci Robot. J. Endourol. 20, 986–990 (2006)

    Article  Google Scholar 

  2. Fujiwara, K., Kanehiro, F., Kajita, S., Kaneko, K., Yokoi, K., Hirukawa, H.: UKEMI: falling motion control to minimize damage to biped humanoid robot. In: International Conference on Intelligent Robots and System. IEEE (2002)

    Google Scholar 

  3. Tahboub, K.A.: Biologically-inspired humanoid postural control. J. Physiol. Paris, 103, 195–210 (2009)

    Article  Google Scholar 

  4. Peterka, R.J.: Comparison of human and humanoid robot control of upright stance. J. Physiol. Paris, 103, 149–158 (2009)

    Article  Google Scholar 

  5. Hyon, S., Cheng, G.: Passivity-based full-body force control for humanoids and application to dynamic balancing and locomotion. In: International Conference on Intelligent Robots and System. IEEE (2006)

    Google Scholar 

  6. Vukobratovic, M., Borovac, B.: Zero-moment point -thirty five years of its life. Int. J. Humanoid Robot. 1, 157–173 (2004)

    Article  Google Scholar 

  7. Tamegaya, K., Kanamiya, Y., Nagao, M., Sato, D.: Inertia-coupling based balance control of a humanoid robot on unstable ground. In: International Conference on Humanoid Robots. IEEE (2008)

    Google Scholar 

  8. Li, Y., Levine, W.S.: An optimal control model for human postural regulation. In: American Control Conference. IEEE (2009)

    Google Scholar 

  9. Li, Y., Levine, W.S.: An optimal model predictive control model for human postural regulation.In: Mediterranean Conference on Control and Automation. IEEE (2009)

    Google Scholar 

  10. Li, Y., Levine, W.S.: Models for human postural regulation that include realistic delays and partial observations. In: Conference on Decision and Control. IEEE (2009)

    Google Scholar 

  11. Aftab, Z., Robert, T., Wieber, P.-B.: Ankle, hip and stepping strategies for humanoid balance recovery with a single model predictive control scheme. In: IEEE International Conference on Humanoid Robots. IEEE (2012)

    Google Scholar 

  12. Castano, J.A., Zhou, C., Li, Z., Tsagarakis, N.: Robust model predictive control for humanoids standing balancing. International Conference on Advanced Robotics and Mechatronics. IEEE (2016)

    Google Scholar 

  13. Bilgin, N., Ozgoren, M.K.: A balance keeping control for humanoid robots by using model predictive control. In: International Carpathian Control Conference. IEEE (2016)

    Google Scholar 

  14. Mergner, T., Schweigart, G., Fennell, L.: Vestibular humanoid postural control. J. Physiol. Paris, 103, 178–194 (2009)

    Article  Google Scholar 

  15. Jeka, J.J., Schöner, G., Dijkstra, T., Ribeiro, P., Lackner, J.R.: Coupling of fingertip somatosensory information to head and body sway. Exp. Brain Res. 113, 475–483 (1997)

    Article  Google Scholar 

  16. Mergner, T.: A neurological view on reactive human stance control. Ann. Rev. Control, 34, 177–198 (2010)

    Article  Google Scholar 

  17. Ishida, A., Imai, S., Fukuoka, Y.: Analysis of the posture control system under fixed and sway-referenced support conditions. IEEE Trans. Biomed. Eng. Inst. Electr. Electron. Eng. 44, 331–336 (1997)

    Google Scholar 

  18. Stepan, G.: Delay effects in the human sensory system during balancing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1195–1212 (2009)

    Article  MathSciNet  Google Scholar 

  19. Atay, F.M.: Balancing the inverted pendulum using position feedback. Appl. Math. Lett. 12, 51–56 (1999)

    Article  MathSciNet  Google Scholar 

  20. Peterka, R.J.: Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097–1118 (2002)

    Article  Google Scholar 

  21. Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations. J. Comput. Appl. Math. 265–275 (2002)

    Article  MathSciNet  Google Scholar 

  22. Sieber, J., Engelborghs, K., Luzyanina, T., Samaey, G., Roose, D.: DDE-BIFTOOL v.3.0 Manual: bifurcation analysis of delay differential equations [Internet] (2016). http://arxiv.org/abs/1406.7144

  23. Cruise, D.R., Chagdes, J.R., Liddy, J.J., Rietdyk, S., Haddad, J.M., Zelaznik, H.N., et al.: An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability. J. Biomech. 60, 48–56 (2017)

    Article  Google Scholar 

  24. Chagdes, J.R., Haddad, J.M., Rietdyk S, Zelaznik HN, Raman A.: Understanding the role of time-delay on maintaining upright stance on rotational balance boards. International Design Engineering Technical Conference. ASME (2015)

    Google Scholar 

  25. Chagdes J.R., Rietdyk, S., Jeffrey, M.H., Howard, N.Z., Raman, A.: Dynamic stability of a human standing on a balance board. J. Biomech. 46, 2593–2602 (2013)

    Article  Google Scholar 

  26. Chagdes, J.R, Rietdyk, S., Haddad, J.M., Zelaznik, H.N, Cinelli, M.E., Denomme, L.T., et al.: Limit cycle oscillations in standing human posture. J. Biomech. 49, 1170–1179 (2016)

    Article  Google Scholar 

  27. Cruise, D.R., Chagdes, J.R., Raman, A.: Dynamics of upright posture on an active balance board with tunable time-delay and stiffness. In: International Design Engineering Technical Conference. ASME (2016)

    Google Scholar 

  28. Asmar, D.C., Jalgha, B., Fakih, A.: Humanoid fall avoidance using a mixture of strategies. Int. J. Humanoid Robot. 9 (2012). https://doi.org/10.1142/S0219843612500028

  29. Jalgha, B., Asmar, D., Elhajj, I.: A hybrid ankle/hip preemptive falling scheme for humanoid robots. International Conference on Robotics and Automation. IEEE (2011)

    Google Scholar 

  30. Sieber, J., Krauskopf, B.: Complex balancing motions of an inverted pendulum subject to delayed feedback control. Phys. D Nonlinear Phenom. 197, 332–345 (2004)

    Article  MathSciNet  Google Scholar 

  31. Dercole, F., Rinaldi, S.: Dynamical systems and their bifurcations. In: Advanced Methods of Biomedical Signal Processing, pp. 291–325 (2011)

    Chapter  Google Scholar 

  32. Roose, D., Szalai, R.: Continuation and bifurcation analysis of delay differential equations. In: Numerical Continuation Methods for Dynamical Systems. Springer, Dordrecht (2007)

    Google Scholar 

  33. Li, X., Ruan, S., Wei, J.: Stability and bifurcation in delay-differential equations with two delays. J. Math. Anal. Appl. 236, 254–280 (1999)

    Article  MathSciNet  Google Scholar 

  34. Engelborghs, K.: DDE-BIFTOOL: a Matlab package for bifurcation analysis of delay differential equations (2000)

    Google Scholar 

  35. Luzyanina, T., Engelborghs, K., Lust, K., Roose, D.: Computation, continuation and bifurcation analysis of periodic solutions of delay differential equations. Int. J. Bifurc. Chaos Appl. Sci. Eng. 7, 2547–2560 (1997)

    Article  MathSciNet  Google Scholar 

  36. Peterka, R.J.: Postural control model interpretation of stabilogram diffusion analysis. Biol. Cybern. 82, 335–343 (2000)

    Article  Google Scholar 

  37. Suzuki, Y., Morimoto, H., Kiyono, K., Morasso, P.G., Nomura, T.: Dynamic determinants of the uncontrolled manifold during human quiet stance. Front. Hum. Neurosci. 10, 618 (2016)

    Google Scholar 

  38. Suzuki, Y., Nomura, T., Morasso, P.: Stability of a double inverted pendulum model during human quiet stance with continuous delay feedback control. International Conference of the Engineering in Medicine and Biology Society. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Yang .

Editor information

Editors and Affiliations

Appendix: Mathematical Model

Appendix: Mathematical Model

The following are the detailed expressions for the terms used in Eq. 1 of the main text. The components of the inertia matrix \( {\mathbf{D}}\left( {\mathbf{q}} \right) \) are given by Eqs. A1A7. The terms in the Coriolis vector \( {\mathbf{C}}\left( {{\mathbf{q}},{\dot{\mathbf{q}}}} \right) \) are given by Eqs. A8A10. Finally, the terms in the gravity vector \( {\mathbf{G}}\left( {\mathbf{q}} \right) \) are given by Eqs. A11A13.

$$ {\mathbf{D}}\left( {\mathbf{q}} \right) = \left[ {\begin{array}{*{20}c} {D_{11} \left( {\mathbf{q}} \right)} & {D_{12} \left( {\mathbf{q}} \right)} & {D_{13} \left( {\mathbf{q}} \right)} \\ {D_{21} \left( {\mathbf{q}} \right)} & {D_{22} \left( {\mathbf{q}} \right)} & {D_{23} \left( {\mathbf{q}} \right)} \\ {D_{31} \left( {\mathbf{q}} \right)} & {D_{32} \left( {\mathbf{q}} \right)} & {D_{33} \left( {\mathbf{q}} \right)} \\ \end{array} } \right] ; { }{\mathbf{C}}\left( {{\mathbf{q}},{\dot{\mathbf{q}}}} \right) = \left[ {\begin{array}{*{20}c} {C_{1} \left( {{\mathbf{q}},{\dot{\mathbf{q}}}} \right)} \\ {C_{2} \left( {{\mathbf{q}},{\dot{\mathbf{q}}}} \right)} \\ {C_{3} \left( {{\mathbf{q}},{\dot{\mathbf{q}}}} \right)} \\ \end{array} } \right]; \, {\mathbf{G}}\left( {\mathbf{q}} \right) = \left[ {\begin{array}{*{20}c} {G_{1} \left( {\mathbf{q}} \right)} \\ {G_{2} \left( {\mathbf{q}} \right)} \\ {G_{3} \left( {\mathbf{q}} \right)} \\ \end{array} } \right] $$
(A1)
$$ \begin{aligned} D_{11} ({\mathbf{q}}) = & I_{1} + I_{2} + I_{3} + L_{1}^{2} m_{1} + L_{1}^{2} m_{2} + l_{1}^{2} m_{3} - L_{1}^{2} m_{2} + L_{1}^{2} m_{3} - h_{a}^{2} m_{1} + 2l_{1} h_{a} m_{2} \\ & + \,2L_{2} l_{3} m_{3} + 2l_{1} l_{3} m_{3} cos(q_{a} + q_{h} ) + 2l_{1} L_{1} m_{3} cos(q_{a} ) + 2h_{a} l_{3} m_{3} cos(q_{a} + q_{h} ) \\ & + \,2l_{1} l_{2} m_{2} cos(q_{a} ) - L_{2}^{2} m_{3} + 2L_{1} l_{3} m_{3} cos(q_{h} ) + 2h_{a} l_{2} m_{2} cos(q_{a} ) + 2L_{1} l_{2} m_{2} \\ & + \,2L_{1} h_{a} m_{3} cos(q_{a} ) + h_{a}^{2} m_{2} + h_{a}^{2} m_{3} + 2l_{1} h_{a} m_{3} \\ \end{aligned} $$
(A2)
$$ \begin{aligned} D_{12} ({\mathbf{q}}) = & D_{21} ({\mathbf{q}}) = I_{2} + I_{3} - L_{1}^{2} m_{2} + L_{1}^{2} m_{3} - L_{2}^{2} m_{3} + 2L_{1} l_{2} m_{2} + L_{1} h_{a} m_{3} cos(q_{a} ) \\ & + \,2L_{1} l_{3} m_{3} cos(q_{h} ) + 2L_{2} l_{3} m_{3} + l_{1} l_{2} m_{2} cos(q_{a} ) + h_{a} l_{2} m_{2} cos(q_{a} ) \\ & + \,l_{1} L_{1} m_{3} cos(q_{a} ) + h_{a} l_{3} m_{3} cos(q_{a} + q_{h} ) + l_{1} l_{3} m_{3} cos(q_{a} + q_{h} ) \\ \end{aligned} $$
(A3)
$$ \begin{aligned} D_{13} ({\mathbf{q}}) = D_{31} ({\mathbf{q}}) = & - m_{3} L_{2}^{2} + 2l_{3} m_{3} L_{2} + I_{3} { + }l_{1} l_{3} m_{3} cos(q_{a} + q_{h} ) \\ & + \,h_{a} l_{3} m_{3} cos(q_{a} + q_{h} ) + L_{1} l_{3} m_{3} cos(q_{h} ) \\ \end{aligned} $$
(A4)
$$ D_{22} ({\mathbf{q}}) = I_{2} + I_{3} - L_{1}^{2} m_{2} + L_{1}^{2} m_{3} - L_{2}^{2} m_{3} + 2L_{1} l_{2} m_{2} 2L_{2} l_{3} m_{3} + 2L_{1} l_{3} m_{3} cos(q_{h} ) $$
(A5)
$$ D_{23} ({\mathbf{q}}) = D_{32} ({\mathbf{q}}) = - m_{3} L_{2}^{2} + 2l_{3} m_{3} L_{2} + I_{3} + L_{1} l_{3} m_{3} cos(q_{h} ) $$
(A6)
$$ D_{33} ({\mathbf{q}}) = - m_{3} L_{2}^{2} + 2l_{3} m_{3} L_{2} + I_{3} $$
(A7)
$$ \begin{aligned} C_{1} ({\mathbf{q}},{\dot{\mathbf{q}}}) = & - (l_{1} + h_{a} )\left( {l_{2} m_{2} sin(q_{a} ) + l_{3} m_{3} sin(q_{a} + q_{h} )} \right)\dot{q}_{2}^{2} - (l_{1} + h_{a} )\left( {L_{1} m_{3} sin(q_{a} )} \right)\dot{q}_{a}^{2} \\ & - \,2l_{3} m_{3} \left( {l_{1} sin(q_{a} + q_{h} ) + L_{1} sin(q_{h} )} \right)\dot{q}_{a} \dot{q}_{h} - 2l_{3} m_{3} \left( {h_{a} sin(q_{a} + q_{h} )} \right)\dot{q}_{a} \dot{q}_{h} \\ & \left( { - 2sin(q_{a} )(l_{1} + h_{a} )\left( {l_{2} m_{2} + L_{1} m_{3} } \right) - 2(l_{1} + h_{a} )\left( {l_{3} m_{3} sin(q_{a} + q_{h} )} \right)} \right)\dot{q}_{b} \dot{q}_{a} \\ & - \,l_{3} m_{3} \left( {l_{1} sin(q_{a} + q_{h} ) + L_{1} sin(q_{h} )} \right)\dot{q}_{h}^{2} - l_{3} m_{3} \left( {h_{a} sin(q_{a} + q_{h} )} \right)\dot{q}_{h}^{2} \\ & - \,2l_{3} m_{3} \left( {l_{1} sin(q_{a} + q_{h} ) + L_{1} sin(q_{h} )} \right)\dot{q}_{h} \dot{q}_{b} - 2l_{3} m_{3} \left( {h_{a} sin(q_{a} + q_{h} )} \right)\dot{q}_{h} \dot{q}_{b} \\ \end{aligned} $$
(A8)
$$ \begin{aligned} C_{2} ({\mathbf{q}},{\dot{\mathbf{q}}}) = & (l_{1} + h_{a} )\left( {l_{2} m_{2} sin(q_{a} ) + L_{1} m_{3} sin(q_{a} )} \right)\dot{q}_{b}^{2} + (l_{1} + h_{a} )l_{3} m_{3} sin(q_{a} + q_{h} )\dot{q}_{b}^{2} \\ & - \,2L_{1} l_{3} m_{3} sin(q_{h} )\dot{q}_{b} \dot{q}_{h} - L_{1} l_{3} m_{3} sin(q_{h} )\dot{q}_{h}^{2} - 2L_{1} l_{3} m_{3} sin(q_{h} )\dot{q}_{a} \dot{q}_{h} \\ \end{aligned} $$
(A9)
$$ \begin{aligned} C_{3} ({\mathbf{q}},{\dot{\mathbf{q}}}) = & l_{3} m_{3}^{2} \left( {l_{1} sin(q_{a} + q_{h} ) + L_{1} sin(q_{h} )} \right)\dot{q}_{1}^{2} + l_{3} m_{3}^{2} \left( {h_{a} sin(q_{a} + q_{h} )} \right)\dot{q}_{b}^{2} \\ & + \,2L_{1} l_{3} m_{3} sin(q_{h} )\dot{q}_{b} \dot{q}_{a} + L_{1} l_{3} m_{3} sin(q_{h} )\dot{q}_{a}^{2} \\ \end{aligned} $$
(A10)
$$ \begin{aligned} G_{1} \left( \varvec{q} \right) = & - g\left( {h_{a} m_{3} + l_{1} m_{1} + l_{1} m_{2} + l_{1} m_{3} } \right)sin(q_{b} ) - gl_{2} m_{2} sin(q_{b} + q_{a} ) \\ & + \,L_{1} m_{3} sin(q_{b} + q_{a} ) - g\left( {l_{3} m_{3} sin(q_{b} + q_{a} + q_{h} ) + h_{a} m_{2} sin(q_{b} )} \right) \\ \end{aligned} $$
(A11)
$$ G_{2} \left( {\mathbf{q}} \right) = - gsin\left( {q_{b} + q_{a} } \right)\left( {L_{1} m_{3} + l_{2} m_{2} } \right) - gl_{3} m_{3} sin\left( {q_{b} + q_{a} + q_{h} } \right) $$
(A12)
$$ G_{3} \left( {\mathbf{q}} \right) = - gl_{3} m_{3} sin\left( {q_{b} + q_{a} + q_{h} } \right) $$
(A13)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chumacero, E., Yang, J. (2019). Human-Inspired Balance Control of a Humanoid on a Rotating Board. In: Chen, J. (eds) Advances in Human Factors in Robots and Unmanned Systems. AHFE 2018. Advances in Intelligent Systems and Computing, vol 784. Springer, Cham. https://doi.org/10.1007/978-3-319-94346-6_11

Download citation

Publish with us

Policies and ethics