Skip to main content

Comparison of Machine Learning Approaches for Motor Imagery Based Optical Brain Computer Interface

  • Conference paper
  • First Online:
Advances in Neuroergonomics and Cognitive Engineering (AHFE 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 775))

Included in the following conference series:

Abstract

A Brain-computer Interface (BCI) is a system that interprets specific patterns in human brain activity, such as the intention to perform motor functions, in order to generate a signal which can be used for communication or control. Functional near infrared spectroscopy (fNIRS) is an emerging optical neuroimaging technique which is a relatively new modality for BCI systems. As such, the optimal paradigms and classification techniques for the interpretation of fNIRS-BCI systems is an area of active investigation. Presently, most fNIRS BCIs have adopted Linear Discriminant Analysis (LDA) algorithm as the primary classification approach, however other alternative methods may offer increased performance. In order to compare different algorithms, a dataset from a four-class motor imagery-based fNIRS-BCI study was re-analyzed, and we systematically compared the performance of different machine learning algorithms: Naïve Bayes (NB), LDA, Logistic Regression (LR), Support Vector Machines (SVM) and Multi-layer Perception (MLP). Our findings suggest that the LR classifier slightly outperformed other classifiers, unlike most fNIRS-BCI studies which reported LDA or SVM as the best classifier. The results presented here suggest that an LR classifier could be a potential replacement for LDA classifiers in motor imagery tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vallabhaneni, A., Wang, T., He, B.: Brain—computer interface. In: Neural Engineering, pp. 85–121. Springer, Boston (2005)

    Google Scholar 

  2. Naseer, N., Hong, K.-S.: fNIRS-based brain-computer interfaces: a review. Front. Hum. Neurosci. 9, 3 (2015)

    Google Scholar 

  3. Coyle, S., Ward, T., Markham, C., McDarby, G.: On the suitability of near-infrared (NIR) systems for next-generation brain–computer interfaces. Physiol. Meas. 25, 815 (2004)

    Article  Google Scholar 

  4. Allison, B.Z., Wolpaw, E.W., Wolpaw, J.R.: Brain–computer interface systems: progress and prospects. Expert Rev. Med. Devices 4, 463–474 (2007)

    Article  Google Scholar 

  5. Friehs, G., Penn, R.D., Park, M.C., Goldman, M., Zerris, V.A., Hochberg, L.R., Chen, D., Mukand, J., Donoghue, J.D.: Initial surgical experience with an intracortical microelectrode array for brain-computer interface applications 881. Neurosurgery 59, 481 (2006)

    Article  Google Scholar 

  6. Leuthardt, E.C., Miller, K.J., Schalk, G., Rao, R.P., Ojemann, J.G.: Electrocorticography-based brain computer interface-the Seattle experience. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 194–198 (2006)

    Article  Google Scholar 

  7. Levine, S.P., Huggins, J.E., BeMent, S.L., Kushwaha, R.K., Schuh, L.A., Rohde, M.M., Passaro, E.A., Ross, D.A., Elisevich, K.V., Smith, B.J.: A direct brain interface based on event-related potentials. IEEE Trans. Rehabil. Eng. 8, 180–185 (2000)

    Article  Google Scholar 

  8. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

  9. Wang, D., Miao, D., Blohm, G.: Multi-class motor imagery EEG decoding for brain-computer interfaces. Front. Neurosci. 6, 151 (2012)

    Article  Google Scholar 

  10. Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., Kübler, A.: An MEG-based brain–computer interface (BCI). Neuroimage 36, 581–593 (2007)

    Article  Google Scholar 

  11. Birbaumer, N., Murguialday, A.R., Weber, C., Montoya, P.: Neurofeedback and brain–computer interface: clinical applications. Int. Rev. Neurobiol. 86, 107–117 (2009)

    Article  Google Scholar 

  12. Yoo, S.-S., Fairneny, T., Chen, N.-K., Choo, S.-E., Panych, L.P., Park, H., Lee, S.-Y., Jolesz, F.A.: Brain–computer interface using fMRI: spatial navigation by thoughts. Neuroreport 15, 1591–1595 (2004)

    Article  Google Scholar 

  13. Hinterberger, T., Weiskopf, N., Veit, R., Wilhelm, B., Betta, E., Birbaumer, N.: An EEG-driven brain-computer interface combined with functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 51, 971–974 (2004)

    Article  Google Scholar 

  14. Weiskopf, N., Mathiak, K., Bock, S.W., Scharnowski, F., Veit, R., Grodd, W., Goebel, R., Birbaumer, N.: Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 51, 966–970 (2004)

    Article  Google Scholar 

  15. Batula, A.M., Kim, Y.E., Ayaz, H.: Virtual and actual humanoid robot control with four-class motor-imagery-based optical brain-computer interface. In: BioMed Research International 2017 (2017)

    Article  Google Scholar 

  16. Batula, A.M., Mark, J., Kim, Y.E., Ayaz, H.: Developing an optical brain-computer interface for humanoid robot control. In: International Conference on Augmented Cognition, pp. 3–13. Springer, Cham (2016)

    Google Scholar 

  17. Batula, A.M., Ayaz, H., Kim, Y.E.: Evaluating a four-class motor-imagery-based optical brain-computer interface. In: 2014 36th Annual International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 2000–2003. IEEE (2014)

    Google Scholar 

  18. Matthews, F., Pearlmutter, B.A., Wards, T.E., Soraghan, C., Markham, C.: Hemodynamics for brain-computer interfaces. IEEE Sig. Process. Mag. 25, 87–94 (2008)

    Article  Google Scholar 

  19. Sitaram, R., Zhang, H., Guan, C., Thulasidas, M., Hoshi, Y., Ishikawa, A., Shimizu, K., Birbaumer, N.: Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. NeuroImage 34, 1416–1427 (2007)

    Article  Google Scholar 

  20. Villringer, A., Chance, B.: Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, 435–442 (1997)

    Article  Google Scholar 

  21. Strangman, G., Boas, D.A., Sutton, J.P.: Non-invasive neuroimaging using near-infrared light. Biol. Psychiatr. 52, 679–693 (2002)

    Article  Google Scholar 

  22. Gramann, K., Fairclough, S.H., Zander, T.O., Ayaz, H.: Trends in neuroergonomics. Front. Hum. Neurosci. 11, 165 (2017)

    Article  Google Scholar 

  23. Schlögl, A., Lee, F., Bischof, H., Pfurtscheller, G.: Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J. Neural Eng. 2, L14 (2005)

    Article  Google Scholar 

  24. Townsend, G., Graimann, B., Pfurtscheller, G.: Continuous EEG classification during motor imagery-simulation of an asynchronous BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 258–265 (2004)

    Article  Google Scholar 

  25. Park, C., Looney, D., ur Rehman, N., Ahrabian, A., Mandic, D.P.: Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 10–22 (2013)

    Article  Google Scholar 

  26. LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., He, B.: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J. Neural Eng. 10, 046003 (2013)

    Article  Google Scholar 

  27. Batula, A.M., Mark, J.A., Kim, Y.E., Ayaz, H.: Comparison of brain activation during motor imagery and motor movement using fNIRS. Comput. Intell. Neurosci. 2017, 12 (2017)

    Article  Google Scholar 

  28. Barbosa, A.O., Achanccaray, D.R., Meggiolaro, M.A.: Activation of a mobile robot through a brain computer interface. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4815–4821. IEEE (2010)

    Google Scholar 

  29. Doud, A.J., Lucas, J.P., Pisansky, M.T., He, B.: Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS ONE 6, e26322 (2011)

    Article  Google Scholar 

  30. Ge, S., Wang, R., Yu, D.: Classification of four-class motor imagery employing single-channel electroencephalography. PLoS ONE 9, e98019 (2014)

    Article  Google Scholar 

  31. Hashimoto, Y., Ushiba, J.: EEG-based classification of imaginary left and right foot movements using beta rebound. Clin. Neurophysiol. 124, 2153–2160 (2013)

    Article  Google Scholar 

  32. Hsu, W.-C., Lin, L.-F., Chou, C.-W., Hsiao, Y.-T., Liu, Y.-H.: EEG classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function. Int. J. Fuzzy Syst. 19, 566–579 (2017)

    Article  MathSciNet  Google Scholar 

  33. Stankevich, L., Sonkin, K.: Human-robot interaction using brain-computer interface based on eeg signal decoding. In: International Conference on Interactive Collaborative Robotics, pp. 99–106. Springer, Cham (2016)

    Google Scholar 

  34. Naseer, N., Hong, K.-S.: Classification of functional near-infrared spectroscopy signals corresponding to the right-and left-wrist motor imagery for development of a brain–computer interface. Neurosci. Lett. 553, 84–89 (2013)

    Article  Google Scholar 

  35. Shin, J., Jeong, J.: Multiclass classification of hemodynamic responses for performance improvement of functional near-infrared spectroscopy-based brain–computer interface. J. Biomed. Opt. 19, 067009 (2014)

    Article  Google Scholar 

  36. Coyle, S.M., Ward, T.E., Markham, C.M.: Brain–computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4, 219 (2007)

    Article  Google Scholar 

  37. Ito, T., Akiyama, H., Hirano, T.: Brain machine interface using portable Near-InfraRed spectroscopy—improvement of classification performance based on ICA analysis and self-proliferating LVQ. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 851–858. IEEE (2013)

    Google Scholar 

  38. Noori, F.M., Naseer, N., Qureshi, N.K., Nazeer, H., Khan, R.A.: Optimal feature selection from fNIRS signals using genetic algorithms for BCI. Neurosci. Lett. 647, 61–66 (2017)

    Article  Google Scholar 

  39. Naseer, N., Noori, F.M., Qureshi, N.K., Hong, K.S.: Determining optimal feature-combination for LDA classification of functional near-infrared spectroscopy signals in brain-computer interface application. Front. Hum. Neurosci. 10, 237 (2016)

    Article  Google Scholar 

  40. Takizawa, R., Kasai, K., Kawakubo, Y., Marumo, K., Kawasaki, S., Yamasue, H., Fukuda, M.: Reduced frontopolar activation during verbal fluency task in schizophrenia: a multi-channel near-infrared spectroscopy study. Schizophr. Res. 99, 250–262 (2008)

    Article  Google Scholar 

  41. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York (2001)

    Google Scholar 

  42. Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid accuracy scale-up: the learning. Data Min. Vis. no. Utgo 1988 7, 1–6 (1996)

    Google Scholar 

  43. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4, R1 (2007)

    Article  Google Scholar 

  44. Bashashati, H., Ward, R.K., Birch, G.E., Bashashati, A.: Comparing different classifiers in sensory motor brain computer interfaces. PLoS ONE 10, e0129435 (2015)

    Article  Google Scholar 

  45. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)

    Article  Google Scholar 

  46. Bennett, K.P., Campbell, C.: Support vector machines: hype or hallelujah? ACM SIGKDD Explor. Newsl. 2, 1–13 (2000)

    Article  Google Scholar 

  47. Christopher, M.B.: Pattern Recognition and Machine Learning. Springer, New York (2016)

    Google Scholar 

  48. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45, 427–437 (2009)

    Article  Google Scholar 

  49. Pohar, M., Blas, M., Turk, S.: Comparison of logistic regression and linear discriminant analysis: a simulation study. Metodoloski zvezki 1, 143 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Ayaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Curtin, A., Ayaz, H. (2019). Comparison of Machine Learning Approaches for Motor Imagery Based Optical Brain Computer Interface. In: Ayaz, H., Mazur, L. (eds) Advances in Neuroergonomics and Cognitive Engineering. AHFE 2018. Advances in Intelligent Systems and Computing, vol 775. Springer, Cham. https://doi.org/10.1007/978-3-319-94866-9_12

Download citation

Publish with us

Policies and ethics