Skip to main content

Investigation of Limestone Cutting Efficiency by the Abrasive Water Suspension Jet

  • Conference paper
  • First Online:
Advances in Manufacturing Engineering and Materials

Abstract

The paper concern to the impact of the Abrasive Water Suspension Jet (AWSJ) limestone cutting process parameters, such as abrasive flow rate, diameter and length of the forming nozzle jet under reduced pressure on the depth of cut. Achieving such a high efficiency in the processing of this rock results from the use of circular motion of the liquid to create a stream. This has become possible due to the replacement of a low-efficiency injector mixer with a new mixer in which the hydro-abrasive mixture is generated directly under high pressure. The conducted research allowed to determine the best geometric dimensions of the working nozzle and abrasive flow rate to achieve the best machining effects were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perec, A.: Environmental aspects of abrasive water jet cutting. Ann. Set Environ. Protect. - Rocznik Ochrona Srodowiska 20 (2018)

    Google Scholar 

  2. Perec, A.: Disintegration and recycling possibility of selected abrasives for water jet cutting. DYNA 84, 249–256 (2017)

    Article  Google Scholar 

  3. Kukielka, L., Krzyzynski, T.: New thermo-elastic thermo-visco-plastic material model and its application. Zeitschrift fur Angewande Mathematik und Mechanik. 80(sup. 3), S595–S596 (2000)

    MATH  Google Scholar 

  4. Kukielka, L., Kukielka, K., Kułakowska, A., Patyk, R., Bohdal, L.: Incremental modelling and numerical solution of the contact problem between movable elastic and elastic/visco-plastic bodies and application in the technological processes. Appl. Mech. Mater. 474, 159–164 (2014)

    Article  Google Scholar 

  5. Nadolny, K., Sutowski, P., Herman, D.: Analysis of aluminum oxynitride AlON (Abral®) abrasive grains during the brittle fracture process using stress-wave emission techniques. Int. J. Adv. Manuf. Technol. 81, 1961–1976 (2015)

    Article  Google Scholar 

  6. Deepak, D., Anjaiah, D., Karanth, K.V., Sharma, N.Y.: CFD simulation of flow in an abrasive water suspension jet: the effect of inlet operating pressure and volume fraction on skin friction and exit kinetic energy. Adv. Mech. Eng. 4, 1–8 (2012). https://doi.org/10.1155/2012/186430

    Article  Google Scholar 

  7. Kowsari, K., Nouraei, H., Samareh, B., Papini, M., Spelt, J.K.: CFD-aided prediction of the shape of abrasive slurry jet micro-machined channels in sintered ceramics. Ceram. Int. 42, 7030–7042 (2016)

    Article  Google Scholar 

  8. Liwszyc, D., Liwszyc, A., Liwszyc, J., Perec, A.: Abrasive Slurry–Injection Jet (AS IJ) a New CNC Cutting Technology. In: 2011 WJTA American Waterjet Conference, Houston, p. E-2. WaterJet Technology Association (2011)

    Google Scholar 

  9. Perec, A.: Abrasive suspension water jet cutting optimization using orthogonal array design. Procedia Eng. 149, 366–373 (2016)

    Article  Google Scholar 

  10. Perec, A., Pude, F., Kaufeld, M., Wegener, K.: Obtaining the selected surface roughness by means of mathematical model based parameter optimization in abrasive waterjet cutting. Strojniski vestnik – J. Mech. Eng. 10, 1–9 (2017)

    Google Scholar 

  11. Hu, G., Zhu, W., Cai, H., Xu, C., Bai, Y., Cheng, J., Yuan, J., Yu, T.: Mathematical model for abrasive suspension jet cutting based on orthogonal test design. J. Shanghai Univ. (English Edition) 13, 37–44 (2009)

    Article  Google Scholar 

  12. Majumder, S.K., Mandal, B., Das, S., Das, P.K.: An experimental investigation on surface roughness achieved during abrasive water-jet machining of low carbon steel. J. Assoc. Eng. India 87, 26–32 (2017)

    Google Scholar 

  13. Liu, D., Huang, C., Wang, J., Zhu, H., Yao, P., Liu, Z.: Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box-Behnken design. Ceram. Int. 40, 7899–7908 (2014)

    Article  Google Scholar 

  14. Lehocká, D., Klich, J., Botko, F., Foldyna, J., Hloch, S., Kepič, J., Kovaľ, K., Krejči, L., Storkan, Z.: Pulsating water jet erosion effect on a brass flat solid surface. Int. J. Adv. Manuf. Technol. 97, 1099–1112 (2018). https://doi.org/10.1007/s00170-018-1882-4

    Article  Google Scholar 

  15. Prazmo, J., Sobczak, R., Perec, A.: Abrasive grain disintegration during high-pressure abrasive water jet cutting in the abrasive reuse aspect. In: Klichova, D., Sitek, L. (eds.) Conference on Water Jetting Technology: Water Jet 2017 – Research, Development, Application, pp. 137–150. Ústav geoniky AV ČR, v.v.i. (2017)

    Google Scholar 

  16. Perec, A.: Abrasive grain breakage process during the high-pressure waterjet formation. In: WJTA American Waterjet Conference, p. C-2. WaterJet Technology Association (2011)

    Google Scholar 

  17. Martinec, P., Foldyna, J., Sitek, L., Ščučka, J., Vašek, J., Martinec, P.: Abrasives for AWJ cutting (2002)

    Google Scholar 

  18. Sobczak, R., Prazmo, J., Perec, A., Chmielik, I.: Dust free surface treatment parameters of the three-phase jet, generated in the sandbot device. MM Sci. J. 872–876 (2016)

    Article  Google Scholar 

  19. King, H.: Limestone: rock uses, formation, composition, pictures. https://geology.com/rocks/limestone.shtml

  20. Perec, A., Pude, F., Stirnimann, J., Wegener, K.: Feasibility study on the use of fractal analysis for evaluating the surface quality generated by waterjet. Tehnički vjesnik 22, 879–883 (2015)

    Article  Google Scholar 

  21. Perec, A.: Influence of conditions highpressure, suspensive, hydroabrasive jet creation onto cutting materials parameters in lower working pressure aspect. Koszalin University of Technology, Koszalin (1995)

    Google Scholar 

  22. Perec, A.: Some aspects of hydroabrasive suspensive jet cutting of aluminum alloy. In: Lee, C.-I., Jeon, S., Song, J.-J. (eds.) 7th Pacific Rim International Conference on Water Jetting Technology, pp. 349–356. Korean Society of WJT (2003)

    Google Scholar 

  23. Perec, A.: Some aspects of hydroabrasive suspensive jet cutting of syenite. In: 17-th International Conference on Water Jetting: Advances and Future Needs, Mainz (2004)

    Google Scholar 

  24. Perec, A.: Experimental research into alternative abrasive material for the abrasive water jet cutting of titanium. Int. J. Adv. Manuf. Technol. 97, 1529–1540 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Perec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perec, A. (2019). Investigation of Limestone Cutting Efficiency by the Abrasive Water Suspension Jet. In: Hloch, S., Klichová, D., Krolczyk, G., Chattopadhyaya, S., Ruppenthalová, L. (eds) Advances in Manufacturing Engineering and Materials. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-99353-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99353-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99352-2

  • Online ISBN: 978-3-319-99353-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics