Skip to main content

Nutrient Compositions of Cultured Thalassiosira rotula and Skeletonema costatum from Jiaozhou Bay

  • Chapter
  • First Online:
Book cover Studies of the Biogeochemistry of Typical Estuaries and Bays in China

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

  • 485 Accesses

Abstract

The nutrient compositions of cultured Thalassiosira rotula and Skeletonema costatum from Jiaozhou Bay were measured. Carbon (C), nitrogen (N), phosphorus (P), and silicon (Si ) contents in cell were obvious higher in T. rotula than in S. costatum, but the percents of N, P, Si contents in cell dry mass in T. rotula were lower than those in S. costatum. The dry mass concentrations of N, P, Si in S. costatum were much higher than those in T. rotula, particularly Si , the former was 6.4 times of the latter, showing that S. costatum could more assimilate these elements. Especially, S. costatum had competitive dominance for assimilation Si , which is beneficial to its becoming a major dominant species in relative short Si of Jiaozhow Bay. There were some differences in numerical value of nutrient ratios both laboratory-cultured phytoplankton and different-sized suspended particulates (mainly phytoplankton ) in Jiaozhou Bay , which was caused by the changes of environment. High contents of C, N and relative low P, Si , high N/P ratio (far higher than Redfield value) and low Si /P and Si /N ratios (far lower than Redfield values) in the two diatoms and different-sized suspended particulates were consistent with those in the seawater. Relative short Si in the seawater and phytoplankton showed that Si was possibly affecting phytoplankton growth in Jiaozhou Bay .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azam, F. (1974). Silicic-acid uptake in diatoms studied with [68Ge] Germanic acid as tracer. Planta (Berl), 121, 205–212.

    Article  Google Scholar 

  • Baines, S. B., Twining, B. S., Vogt, S., Balch, W. M., Fisher, N. S., & Nelson, D. M. (2011). Elemental composition of equatorial Pacific diatoms exposed to additions of silicic acid and iron. Deep-Sea Research II, 58, 512–523.

    Article  Google Scholar 

  • Beardall, J., Young, E., & Roberts, S. (2001). Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences, 63, 44–69.

    Article  Google Scholar 

  • Binder, B. J., & Chisholm, S. W. (1980). Changes in the soluble silicon pool size in the marine diatom Thalassiosira weissflogii. Marine Biology Letter, 1, 205–212.

    Google Scholar 

  • Brown, E. J., & Button, D. K. (1979). Phosphate-limited growth kinetics of Selanastrum capricornatum (Chlorophyceae). Journal of Phycology, 15, 305–311.

    Article  Google Scholar 

  • Brzezinski, M. A. (1985). The Si: C: N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. Journal of Phycology, 21, 347–357.

    Article  Google Scholar 

  • Brzezinski, M. A., Olsonl, R. J., & Chisholm, S. W. (1990). Silicon availability and cell-cycle progression in marine diatoms. Marine Ecology Progress Series, 67, 83–96.

    Article  Google Scholar 

  • Burkhardt, S., & Riebesell, U. (1997). CO2 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum. Marine Ecology Progress Series, 155, 67–76.

    Article  Google Scholar 

  • Claquin, P., Martin-Jézéquel, V., Kromkamp, J. C., Veldhuis, M. J. W., & Kraay, G. W. (2002). Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (bacillariophyceae) under light, nitrogen, and phosphorus control. Journal of Phycology, 38(5), 922–930.

    Article  Google Scholar 

  • Conley, D. J., Kilham, S. S., & Theriot, E. (1989). Differences in silica content between marine and freshwater diatoms. Limnology and Oceanography, 34(l), 205–213.

    Google Scholar 

  • De La Rocha, C. L., Terbrüggen, A., Völker, C., & Hohn, S. (2010). Response to and recovery from nitrogen and silicon starvation in Thalassiosira weissflogii: Growth rates, nutrient uptake and C, Si and N content per cell. Marine Ecology Progress Series, 412, 57–68.

    Article  Google Scholar 

  • Eppley, R. W., Reid, F. M. H., & Strickland, J. D. H. (1970). The ecology of the plankton off La Jolla, California, in the period April through September 1967. Part I. Estimates of phytoplankton crop size, growth rate and primary production. Bull. In J. D. H. Strickland (Ed.), Bulletin, Scripps Institution of Oceanography, 17, 33–42.

    Google Scholar 

  • Fraga, F., Ríos, A. F., Pérez, F. F., & Figueiras, F. G. (1998). Theoretical limits of oxygen:Carbon and oxygen:Nitrogen ratios during photosynthesis and mineralization of organic matter in the sea. Scientia Marina, 62(1–2), 161–168.

    Google Scholar 

  • Geider, R. J., & La Roche, J. (2002). Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology, 37, 1–17.

    Article  Google Scholar 

  • Goldman, J. C., & Glibert, P. M. (1983). Kinetics of inorganic nitrogen uptake by phytoplankton. In E. J. Carpenter & D. G. Capone (Eds.), Nitrogen in marine environments (pp. 233–274). New York: Academic.

    Chapter  Google Scholar 

  • Hagstrom, J. A., Graneli, E., Moreira, M. O. P., & Odebrecht, C. (2011). Domoic acid production and elemental composition of two Pseudo-nitzschia multiseries strains, from the NW and SW Atlantic Ocean, growing in phosphorus-or nitrogen-limited chemostat cultures. Journal of Plankton Research, 33(2), 297–308.

    Article  Google Scholar 

  • Harrison, P. J., Conway, H. L., Holmes, R. W., & Davis, C. O. (1977). Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida. Marine Biology, 43, 19–31.

    Article  Google Scholar 

  • Heldal, M., Scanlan, D. J., Norland, S., Thingstad, F., & Mann, N. H. (2003). Elemental composition of single cells of various strains of marine Prochlorcoccus and Synechococcus using X-ray microanalysis. Limnology and Oceanography, 48, 1732–1743.

    Article  Google Scholar 

  • Ho, T. Y., Quigg, A., & Finkel, Z. V. (2003). The elemental composition of some marine phytoplankton. Journal of Phycology, 39, 1145–1159.

    Article  Google Scholar 

  • Hoffmann, L. J., Peeken, I., & Lochte, K. (2007). Effects of iron on the elemental stoichiometry during EIFEX and in the diatoms Fragilariopsis kerguelensis and Chaetoceros dichaeta. Biogeosciences, 4, 569–579.

    Article  Google Scholar 

  • Koroleff, F. (1976). Determination of total phosphorus. In K. Grasshoff (Ed.), Methods of seawater analysis (pp. 123–125). Weinheim: Verlag Chemie.

    Google Scholar 

  • Lewin, J. C., & Guillard, R. R. (1963). Diatoms. Annual Review of Microbiology, 17, 373–414.

    Article  Google Scholar 

  • Leynaert, A., Tréguer, P., Quéguiner, B., & Morvan, J. (1991). The distribution of biogenic silica and the composition of particulate organic matter in the Weddell-Scotia sea during spring 1988. Marine Chemistry, 35, 435–447.

    Article  Google Scholar 

  • Lirdwitayaprasit, T., Okaichi, T., Montani, S., & Ochi, T. (1990). Changes in cell chemical composition during the life cycle of Scrippsiella trochoidea (Dinophycea). Journal of Phycology 26, 299–306.

    Google Scholar 

  • Loebl, M., Cockshutt, A. M., Campbell, D. A., & Finkel, Z. V. (2010). Physiological basis for high resistance to photoinhibition under nitrogen depletion in Emiliania huxleyi. Limnology and Oceanography, 55(5), 2150–2160.

    Article  Google Scholar 

  • Marchetti, A., & Harrison, P. J. (2007). Coupled changes in the cell morphology and the elemental (C, N, and Si) composition of the pennate diatom Pseudo-nitzschia due to iron deficiency. Limnology and Oceanography: Mathods, 52(5), 2270–2284.

    Article  Google Scholar 

  • Menzel, D. W., & Ryther, J. H. (1964). The composition of particulate organic matter in the western North Atlantic. Limnology and Oceanography, 9, 179–186.

    Article  Google Scholar 

  • Mullin, M. M., Sloan, P. R., & Eppley, R. W. (1966). Relationship between carbon content, cell volume, and area in phytoplankton. Limnology and Oceanography, 11, 307–311.

    Article  Google Scholar 

  • Nelson, D. M., & Brzezinski, A. (1990). Kinetics of silicate acid uptake by natural diatom assemblages in two Gulf & Stream warm-core rings. Marine Ecology Progress Series, 62, 283–292.

    Article  Google Scholar 

  • Nøst-Hegseth, E. (1982). Chemical and species composition of the phytoplankton during the first spring bloom in Trondheimsfjorden, 1975. Sarsia, 67, 131–141.

    Article  Google Scholar 

  • Paasche, E. (1980). Silicon content of five marine plankton diatom species measured with a rapid filter method. Limnology and Oceanography, 25(3), 474–480.

    Article  Google Scholar 

  • Perry, M. J., & Eppley, R. W. (1981). Phosphate uptake by phytoplankton in the central North Pacific Ocean. Deep-Sea Research, 28, 39–49.

    Article  Google Scholar 

  • Raven, J. A. (1986). Physiological consequences of extremely small size for autotrophic organisms in the sea. In T. Platt & W. K. W. Li (Eds.), Photosynthetic picoplankton (Vol. 214, pp. 1–70). Canadian Bulletin of Fisheries and Aquatic Science.

    Google Scholar 

  • Ray, S., Berec, L., Straskraba, M., & Joergensen, S. E. (2001). Optimization of exergy and implications of body sizes of phytoplankton and zooplankton in an aquatic ecosystem model. Ecological Modeling, 140, 219–234.

    Article  Google Scholar 

  • Redfield, A. C., Ketchum, B. H., & Richards, F. (1963). The influence of organisms on the composition of seawater. In M. N. Hill (Ed.), The Sea (Vol. 2, pp. 26–77). New York: Wiley.

    Google Scholar 

  • Rhee, G. Y., & Gotham, I. J. (1980). Optimum N:P ratios and coexistence of planktonic algae. Journal of Phycology 16, 486–489.

    Google Scholar 

  • Ríos, A. F., Fraga, F., Pérez, F. F., & Figueiras, F. G. (1998). Chemical composition of phytoplankton and particulate organic matter in the Ría de Vigo (NW Spain). Scientia Marina, 62(3), 257–271.

    Article  Google Scholar 

  • Sakshaug, E., & Holm-Hansen, O. (1977). Chemical composition of Skeletonema costatum (Grev.) Cleve And Pavlova (monochrysis) Lutheri (droop) green as a function of nitrate-, phosphate-, and iron-limited growth. Journal of Experimental Marine Biology and Ecology, 29, 1–34.

    Article  Google Scholar 

  • Sakshaug, E., Andresen, K., Myklestad, S., & Olsen, Y. (1983). Nutrient status of phytoplankton communities in Norwegian waters marine, brackish, and fresh as revealed by their chemical composition. Journal of Plankton Research 5, 175–196.

    Google Scholar 

  • Shen, Z. L. (2001). Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science, 52, 211–224.

    Article  Google Scholar 

  • Shen, Z. L., Yang, H. M., & Liu, Q. (1997). A studies on particulate organic carbon in the Jiaozhou Bay. The Yellow Sea, 3, 71–75.

    Google Scholar 

  • Shen, Z. L., Liu, Q., Wu, Y. L., & Yao, Y. (2006). Nutrient structure of seawater and ecological responses in Jiaozhou Bay, China. Estuarine, Coastal and Shelf Science, 69(1–2), 299–307.

    Google Scholar 

  • Shen, Z. L., Wu, Y. L., Liu, Q., & Yao, Y. (2008). Nutrient compositions of cultured Thalassiosira rotula and Skeletonema costatum from the Jiaozhou Bay in China. Acta Oceanologica Sinica, 27(4), 147–155.

    Google Scholar 

  • Strathmann, R. R. (1967). Estimating organic carbon content of phytoplankton from cell volume or plasma volume. Limnology and Oceanography, 12, 411–418.

    Article  Google Scholar 

  • Strickland, J. D. H. (1960). Measuring the production of marine phytoplankton. Bulletin of the Fisheries Research Board of Canada 122, 172 p.

    Google Scholar 

  • Sullivan, C. W. (1977). Diatom mineralization of silicic acid. Part II. Regulation of Si(OH)4 transport rates during the cell cycle of Navicula pelliculosa. Journal of Phycology 13, 86–91.

    Google Scholar 

  • Sun, J., Liu, D. Y., & Qian, S. B. (1999). Study on phytoplankton biomass, Part I. Phytoplankton measurement biomass from cell volume or plasma volume. Acta Oceanologica Sinica 21(2), 75–85 (in Chinese with English abstract).

    Google Scholar 

  • Sun, S., Liu, G. M., Zhang, Y. S., Wu, Y. L., Pu, X. M., & Yang, B. (2002). Community composition and distribution character of phytoplankton in the jiaozhou Bay in the 1990s. Oceanologia et Limnologia Sinica, Zooplankton Special 37–44 (in Chinese with English abstract).

    Google Scholar 

  • Suttle, C. A., Cochlan, W. P., & Stockner, J. G. (1991). Size-dependent ammonium and phosphate uptake, and N:P supply ratios in an Oligotropic Lake. Canadian Journal of Fisheries and Aquatic Sciences, 48, 1226–1234.

    Article  Google Scholar 

  • Taguchi, S. (1976). Relationships between photosynthesis and cell size of marine diatoms. Journal of Phycology, 12, 185–189.

    Google Scholar 

  • Treguer, P., & Gueneley, S. (1988). Biogenic silica and particulate organic matter from the Indian Sectoer of the Southern Ocean. Marine Chemistry, 23, 167–180.

    Article  Google Scholar 

  • Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J. R., & Sieracki, M. E. (1992). Relationships between cell-volume and the carbon and nitrogen-content of marine photosynthetic nanoplankton. Limnology and Oceanography, 37, 1434–1446.

    Article  Google Scholar 

  • Vrede, K., Heldal, M., Norland, S., & Bratbak, G. (2002). Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient limited bacterioplankton. Applied and Environmental Microbiology, 68, 2965–2971.

    Article  Google Scholar 

  • Wu, Y. L., Sun, S., Zhang, Y. S., & Zhang, F. (2004). Quantitative study on long- term variation of phytoplankton in Jiaozhou Bay. Oceanologia et Limnologia Sinica, 35(6), 518–523. (in Chinese with English abstract).

    Google Scholar 

  • Yao, Y., & Shen, Z. L. (2007). Seasonal and long-term variations in nutrients in north-eastern of Jiaozhou Bay. China. Advances in Water Science, 18(3), 379–384. (in Chinese with English abstract).

    Google Scholar 

  • Zhang, Y. S., Wu, Y. L., Zou, J. Z., Yu, Z. M., & Pu, X. M. (2002). A red tide caused by diatom Eucampia zoodiacus in the Jiaozhou Bay. Oceanologia et Limnologia Sinica, 33, 55–61. (in Chinese with English abstract).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, Z., Wu, Y., Liu, Q., Yao, Y. (2020). Nutrient Compositions of Cultured Thalassiosira rotula and Skeletonema costatum from Jiaozhou Bay. In: Shen, Z. (eds) Studies of the Biogeochemistry of Typical Estuaries and Bays in China. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58169-8_15

Download citation

Publish with us

Policies and ethics