Skip to main content

Immunologisches und energiespeicherndes Gedächtnis

  • Chapter
  • First Online:
Drei Gedächtnisse für den Körper
  • 2036 Accesses

Zusammenfassung

Das Immungeschehen beeinflusst indirekt über die Aktivierung der Stressachsen den Abruf von energiereichen Substraten aus dem energiespeichernden Gedächtnis. Gleichzeitig können Immunzellhormone (Zytokine) direkt an der Fettzelle den Abruf der Fettsäuren aktivieren. Immunologische Gedächtniszellen nisten sich im Fettgewebe ein und können bei einem Zweitkontakt mit dem Erreger den Abruf von Fettsäuren aus dem energiespeichernden Gedächtnis bewirken. Andersherum können Hormone oder Fettsäuren aus dem Fettgewebe die Immunantwort und das immunologische Gedächtnis steuern. Die Unterhaltung des immunologischen und energiespeichernden Gedächtnisses wird auf anschauliche Weise sichtbar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Weiterführende Literatur

  • Besedovsky H, Sorkin E, Keller M, Muller J (1975) Changes in blood hormone levels during the immune response. Proc Soc Exp Biol Med 150(2):466–470

    Article  Google Scholar 

  • Besedovsky HO, del Rey A (1996) Immune-neuro-endocrine interactions. Endocr Rev 17:64–102

    Article  Google Scholar 

  • Buttgereit F, Burmester GR, Straub RH, Seibel MJ, Zhou H (2011) Exogenous and endogenous glucocorticoids in rheumatic diseases. Arthritis Rheum 63(1):1–9

    Article  Google Scholar 

  • Cui G, Staron MM, Gray SM, Ho PC, Amezquita RA, Wu J et al (2015) IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161(4):750–761

    Article  Google Scholar 

  • Friedman A, Sklan D (1995) Effect of dietary fatty acids on antibody production and fatty acid composition of lymphoid organs in broiler chicks. Poult Sci 74(9):1463–1469

    Article  Google Scholar 

  • Han SJ, Glatman Zaretsky A, Andrade-Oliveira V, Collins N, Dzutsev A, Shaik J et al (2017) White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection. Immunity 47(6):1154–1168

    Article  Google Scholar 

  • Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091):87–91

    Article  Google Scholar 

  • Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271(5249):665–668

    Article  Google Scholar 

  • Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394(6696):897–901

    Article  Google Scholar 

  • Maury E, Ehala-Aleksejev K, Guiot Y, Detry R, Vandenhooft A, Brichard SM (2007) Adipokines oversecreted by omental adipose tissue in human obesity. Am J Physiol Endocrinol Metab 293(3):E656–E665

    Article  Google Scholar 

  • McGillicuddy FC, Chiquoine EH, Hinkle CC, Kim RJ, Shah R, Roche HM et al (2009) Interferon gamma attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway. J Biol Chem 284(46):31936–31944

    Article  Google Scholar 

  • Pan Y, Tian T, Park CO, Lofftus SY, Mei S, Liu X et al (2017) Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543(7644):252–256

    Article  Google Scholar 

  • Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS et al (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460(7251):103–107

    Article  Google Scholar 

  • Pollizzi KN, Sun IH, Patel CH, Lo YC, Oh MH, Waickman AT et al (2016) Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat Immunol 17(6):704–711

    Article  Google Scholar 

  • Tsigos C, Papanicolaou DA, Defensor R, Mitsiadis CS, Kyrou I, Chrousos GP (1997) Dose effects of recombinant human interleukin-6 on pituitary hormone secretion and energy expenditure. Neuroendocrinology 66(1):54–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer H. Straub .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Straub, R. (2020). Immunologisches und energiespeicherndes Gedächtnis. In: Drei Gedächtnisse für den Körper. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59131-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59131-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59130-7

  • Online ISBN: 978-3-662-59131-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics