Skip to main content

Pyoverdine as a Biorecognition Element to Develop Biosensor for the Detection of Furazolidone

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Furazolidone is a nitrofuran drug, which is usually utilized to treat bacterial infections for aquaculture and poultry animals and protect them from death. However, furazolidone has potential genotoxic, carcinogenic, and mutagenic effects. For example, furazolidone shows strong mutagenic effect on Escherichia coli and Salmonella typhimurium, which can be used to kill these bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali B (1999) Pharmacological, therapeutic and toxicological properties of furazolidone: some recent research. Vet Res Commun 23:343–360

    Article  Google Scholar 

  • Basak J (1995) Inter-strand cross-linking of Vibrio cholerae DNA induced by furazolidone: a quantitative assay by four simple methods. Mutat Res Fundam Mol Mech Mutagen 327:5–15

    Article  Google Scholar 

  • Chen L-X, Niu C-G, Zeng G-M, Zeng G-M, Shen G-L, Yu R-Q (2003) Aminobenzothiazole Schiff base as a fluorescence carrier for sensor preparation and furazolidone assay. Anal Lett 36:2609–2622

    Article  Google Scholar 

  • Deo RP, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M, Scholz F, Chen W, Lin Y (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530:185–189

    Article  Google Scholar 

  • Elliott R (1958) Some properties of pyoverdine, the water-soluble fluorescent pigment of the pseudomonads. Appl Microbiol 6:241

    Google Scholar 

  • Fotouhi L, Faramarzi S (2004) Voltammetric studies on nitro radical anion formation from furazolidone and kinetic of the coupled chemical reaction. J Electroanal Chem 568:93–99

    Article  Google Scholar 

  • Gajewska J, Szczypka M, Tudek B, Szymczyk T (1990) Studies on the effect of ascorbic acid and selenium on the genotoxicity on nitrofurans: nitrofurazone and furazolidone. Mutat Res Fundam Mol Mech Mutagen 232:191–197

    Article  Google Scholar 

  • Hai NN, Chinh VD, Thuy UTD, Chi TK, Yen NH, Cao DT, Liem NQ, Nga PT (2013) Detection of the pesticide by functionalised quantum dots as fluorescence-based biosensor. Int J Nanotechnol 10:137–145

    Article  Google Scholar 

  • Hoogenboom LA, Berghmans MC, Polman TH, Parker R, Shaw IC (1992) Depletion of protein-bound furazolidone metabolites containing the 3-amino-2-oxazolidinone side-chain from liver, kidney and muscle tissues from pigs. Food Addit Contam 9:623–630

    Article  Google Scholar 

  • Jin X, Tang S, Chen Q, Zou J, Zhang T, Liu F, Zhang S, Sun C, Xiao X (2011) Furazolidone induced oxidative DNA damage via up-regulating ROS that caused cell cycle arrest in human hepatoma G2 cells. Toxicol Lett 201:205–212

    Article  Google Scholar 

  • Kartha KK, Babu SS, Srinivasan S, Ajayaghosh A (2012) Attogram sensing of trinitrotoluene with a self-assembled molecular gelator. J Am Chem Soc 134:4834–4841

    Article  Google Scholar 

  • Kumar J, D’Souza S (2010) An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent. Biosens Bioelectron 26:1292–1296

    Article  Google Scholar 

  • Li J, Liu J, Zhang H-C, Li H, Wang J-P (2010) Broad specificity indirect competitive immunoassay for determination of nitrofurans in animal feeds. Anal Chim Acta 678:1–6

    Article  Google Scholar 

  • McCracken RJ, Kennedy DG (1997) Determination of the furazolidone metabolite, 3-amino-2-oxazolidinone, in porcine tissues using liquid chromatography-thermospray mass spectrometry and the occurrence of residues in pigs produced in Northern Ireland. J Chromatogr B Biomed Sci Appl 691:87–94

    Article  Google Scholar 

  • Morales A, Richter P, Toral MI (1987) Voltammetric behaviour of nitrofurazone, furazolidone and other nitro derivatives of biological importance. Analyst 112:965–970

    Article  Google Scholar 

  • Mulchandani P, Chen W, Mulchandani A, Wang J, Chen L (2001) Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosens Bioelectron 16:433–437

    Article  Google Scholar 

  • Mustafa A, Ali B, Satti A (1985) HPLC analysis of furazolidone in goats given the therapeutic dose. Comp Biochem Physiol Part C Comp Pharmacol 81:167–169

    Article  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    Article  Google Scholar 

  • Xiao R, Kisaalita WS (1995) Purification of Pyoverdines of Pseudomonas fluorescens 2-79 by copper-chelate chromatography. Appl Environ Microbiol 61:3769–3774

    Google Scholar 

  • Xing X, Zhou Y, Sun J, Tang D, Li T, Wu K (2013) Determination of Paraquat by Cucurbit[7] uril sensitized fluorescence quenching method. Anal Lett 46:694–705

    Article  Google Scholar 

  • Yin K, Zhang W, Chen L (2014) Pyoverdine secreted by Pseudomonas aeruginosa as a biological recognition element for the fluorescent detection of furazolidone. Biosens Bioelectron 51:90–96 (Reproduced with Permission. Copyright (2014) Elsevier)

    Article  Google Scholar 

  • Yin K, Wu Y, Wang S, Chen L (2016) A sensitive fluorescent biosensor for the detection of copper ion inspired by biological recognition element pyoverdine. Sens Actuators B Chem 232:257–263 (Reproduced with Permission. Copyright (2016) Elsevier)

    Article  Google Scholar 

  • Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc 133:8424–8427

    Article  Google Scholar 

  • Zhang W, Niu Z, Yin K, Liu F, Chen L (2013) Degradation of furazolidone by bacteria Acinetobacter calcoaceticus T32, Pseudomonas putida SP1 and Proteus mirabilis V7. Int Biodeterior Biodegradation 77:45–50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yin .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, K. (2020). Pyoverdine as a Biorecognition Element to Develop Biosensor for the Detection of Furazolidone. In: Design of Novel Biosensors for Optical Sensing and Their Applications in Environmental Analysis. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-6488-4_3

Download citation

Publish with us

Policies and ethics