Skip to main content

A Near-Infrared Ratiometric Fluorescent Probe to Selectively Detect Cysteine in Mitochondria for Indicating Oxidative Stress In Vivo

  • Chapter
  • First Online:
Design of Novel Biosensors for Optical Sensing and Their Applications in Environmental Analysis

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Cysteine (Cys) is a type of intracellular biothiol, which plays important roles in numerous metabolic processes of organisms, such as heavy metal binding, biocatalysis, signal transduction, and protein turnover Reddie and Carroll (Curr Opin Chem Biol 12:746–754, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong JS, Whiteman M, Yang H, Jones DP, Sternberg P (2004) Cysteine starvation activates the redox-dependent mitochondrial permeability transition in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 45:4183–4189

    Article  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  Google Scholar 

  • Benesch RE, Benesch R (1955) The acid strength of the-SH group in cysteine and related compounds. J Am Chem Soc 77:5877–5881

    Article  Google Scholar 

  • Burchfield H (1958) Molecular rearrangement in the reaction of cysteine with 1-fluoro-2,4-dinitrobenzene. Nature 181:49

    Article  Google Scholar 

  • Dai X, Wu Q-H, Wang P-C, Tian J, Xu Y, Wang S-Q, Miao J-Y, Zhao B-X (2014) A simple and effective coumarin-based fluorescent probe for cysteine. Biosens Bioelectron 59:35–39

    Article  Google Scholar 

  • Escobedo JO, Rusin O, Lim S, Strongin RM (2010) NIR dyes for bioimaging applications. Curr Opin Chem Biol 14:64–70

    Article  Google Scholar 

  • Gerard-Monnier D, Fougeat S, Chaudiere J (1992) Glutathione and cysteine depletion in rats and mice following acute intoxication with diethylmaleate. Biochem Pharmacol 43:451–456

    Article  Google Scholar 

  • Guo Z, Nam S, Park S, Yoon J (2012) A highly selective ratiometric near-infrared fluorescent cyanine sensor for cysteine with remarkable shift and its application in bioimaging. Chem Sci 3:2760–2765

    Article  Google Scholar 

  • Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci 77:990–994

    Article  Google Scholar 

  • Jones DP, Go Y-M, Anderson CL, Ziegler TR, Kinkade JM Jr, Kirlin WG (2004) Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J 18:1246–1248

    Article  Google Scholar 

  • Jung HS, Han JH, Pradhan T, Kim S, Lee SW, Sessler JL, Kim TW, Kang C, Kim JS (2012) A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials 33:945–953

    Article  Google Scholar 

  • Kheir-Eldin AA, Motawi TK, Gad MZ, Abd-ElGawad HM (2001) Protective effect of vitamin E, β-carotene and N-acetylcysteine from the brain oxidative stress induced in rats by lipopolysaccharide. Int J Biochem cell Biol 33:475–482

    Article  Google Scholar 

  • Kong F, Liu R, Chu R, Wang X, Xu K, Tang B (2013) A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells. Chem Commun 49:9176–9178

    Article  Google Scholar 

  • Lee J-S, Ulmann PA, Han MS, Mirkin CA (2008) A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8:529–533

    Article  Google Scholar 

  • Li H, Fan J, Wang J, Tian M, Du J, Sun S, Sun P, Peng X (2009) A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine. Chem Commun 39:5904–5906

    Article  Google Scholar 

  • Li X, Gao X, Shi W, Ma H (2013) Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 114:590–659

    Article  Google Scholar 

  • Lin W, Long L, Yuan L, Cao Z, Chen B, Tan W (2008) A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Org Lett 10:5577–5580

    Article  Google Scholar 

  • Long L, Lin W, Chen B, Gao W, Yuan L (2011) Construction of a FRET-based ratiometric fluorescent thiol probe. Chem Commun 47:893–895

    Article  Google Scholar 

  • Lv H, Yang X-F, Zhong Y, Guo Y, Li Z, Li H (2014) Native chemical ligation combined with spirocyclization of benzopyrylium dyes for the ratiometric and selective fluorescence detection of cysteine and homocysteine. Anal Chem 86:1800–1807

    Article  Google Scholar 

  • Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147

    Article  Google Scholar 

  • Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:481–490

    Article  Google Scholar 

  • Pu F, Huang Z, Ren J, Qu X (2010) DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. Anal Chem 82:8211–8216

    Article  Google Scholar 

  • Reddie KG, Carroll KS (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12:746–754

    Article  Google Scholar 

  • Schwarzländer M, Finkemeier I (2013) Mitochondrial energy and redox signaling in plants. Antioxid Redox Sig 18:2122–2144

    Article  Google Scholar 

  • Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  Google Scholar 

  • Su D, Teoh CL, Sahu S, Das RK, Chang Y-T (2014) Live cells imaging using a turn-on FRET-based BODIPY probe for biothiols. Biomaterials 35:6078–6085

    Article  Google Scholar 

  • Tanaka F, Mase N, Barbas Iii CF (2004) Determination of cysteine concentration by fluorescence increase: reaction of cysteine with a fluorogenic aldehyde. Chem Commun 15:1762–1763

    Google Scholar 

  • Ubuka T, Ohta J, Yao W-B, Abe T, Teraoka T, Kurozumi Y (1992) L-Cysteine metabolism via 3-mercaptopyruvate pathway and sulfate formation in rat liver mitochondria. Amino Acids 2:143–155

    Article  Google Scholar 

  • Ueno T, Nagano T (2011) Fluorescent probes for sensing and imaging. Nat Methods 8:642

    Article  Google Scholar 

  • Vincent BRDS, Mousset S, Jacquemin-Sablon A (1999) Cysteine control over glutathione homeostasis in Chinese hamster fibroblasts overexpressing a γ-glutamylcysteine synthetase activity. European J Biochem 262:873–878

    Article  Google Scholar 

  • Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278

    Article  Google Scholar 

  • Yang Z, Zhao N, Sun Y, Miao F, Liu Y, Liu X, Zhang Y, Ai W, Song G, Shen X (2012) Highly selective red-and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells. Chem Commun 48:3442–3444

    Article  Google Scholar 

  • Yee C, Yang W, Hekimi S (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157:897–909

    Article  Google Scholar 

  • Yin C, Huo F, Zhang J, Martínez-Máñez R, Yang Y, Lv H, Li S (2013) Thiol-addition reactions and their applications in thiol recognition. Chem Soc Rev 42:6032–6059

    Article  Google Scholar 

  • Yin K, Li B, Wang X, Zhang W, Chen L (2015a) Ultrasensitive colorimetric detection of Cu2+ ion based on catalytic oxidation of l-cysteine. Biosens Bioelectron 64:81–87 (Reproduced with Permission. Copyright (2015) Elsevier)

    Google Scholar 

  • Yin K, Yu F, Zhang W, Chen L (2015b) A near-infrared ratiometric fluorescent probe for cysteine detection over glutathione indicating mitochondrial oxidative stress in vivo. Biosens Bioelectron 74:156–164 (Reproduced with Permission. Copyright (2015) Elsevier)

    Google Scholar 

  • Yu F, Li P, Wang B, Han K (2013) Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. J Am Chem Soc 135:7674–7680

    Article  Google Scholar 

  • Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D (2007) A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging. J Am Chem Soc 129:10322–10323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yin .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, K. (2020). A Near-Infrared Ratiometric Fluorescent Probe to Selectively Detect Cysteine in Mitochondria for Indicating Oxidative Stress In Vivo. In: Design of Novel Biosensors for Optical Sensing and Their Applications in Environmental Analysis. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-6488-4_6

Download citation

Publish with us

Policies and ethics