Skip to main content

Erodibility of Seabed Sediments in the Modern Yellow River Delta

  • Chapter
  • First Online:
  • 519 Accesses

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

The erodibility of intertidal sediments is a key factor affecting coastal erosion and sediment resuspension. In this chapter, a geological engineering study is undertaken to determine the spatial distribution of sediment erodibility in the modern Yellow River Delta. The critical shear stress of sediments is measured both with a mini-annular flume and a Cohesive Strength Meter (CSM) along the coastline of the Yellow River Delta (i.e., deposited in different historical periods), where the geotechnical properties of sediments are also determined. The influencing factors are identified and implications for sediment erosion and microtopography formation in this unique area are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aberle J, Nikora V, Walters R (2004) Effects of bed material properties on cohesive sediment erosion. Mar Geol 207:83–93

    Article  Google Scholar 

  • Amos CL, Feeney T, Sutherland TF et al (1997) The stability of fine-grained sediments from the Fraser River delta. Estuar Coast Shelf Sci 45(4):507–524

    Article  Google Scholar 

  • Amos CL, Umgiesser G, Ferrarin C et al (2010) The erosion rates of cohesive sediments in Venice lagoon, Italy. Cont Shelf Res 30:859–870

    Article  Google Scholar 

  • Andersen TJ, Fredsoe J, Pejrup M (2007) In situ estimation of erosion and deposition thresholds by acoustic doppler velocimeter (ADV). Estuar Coast Shelf Sci 75:327–336

    Article  Google Scholar 

  • Andersen TJ, Lanuru M, Van Bermem C et al (2010) Erodibility of a mixed mudflat dominated by microphytobenthos and Cerastoderma edule, East Frisian Wadden Sea, Germany. Estuar Coast Shelf Sci 87:197–206

    Article  Google Scholar 

  • Bale AJ, Widdows J, Harris CB et al (2006) Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume. Cont Shelf Res 26:1206–1216

    Article  Google Scholar 

  • Black K, Cramp A (1995) A device to examine the in situ response of intertidal cohesive sediment deposits to fluid shear. Cont Shelf Res 15(15):1945–1954

    Article  Google Scholar 

  • Black KS, Tolhurst TJ, Paterson DM et al (2002) Working with natural cohesive sediments. J Hydraul Eng 128(2):2–8

    Article  Google Scholar 

  • British Standards Institution (1990) Bs 1377: British standards methods of test for soils for civil engineering purposes. B.S.I, London

    Google Scholar 

  • Cardoso AH, Graf WH, Gust G (1990) Uniform flow in a smooth open channel. J Hydraul Res 27(5):603–616

    Article  Google Scholar 

  • Eckman JE, Nowell ARM, Jumars PA (1981) Sediment destabilization by animal tubes. J Mar Res 39(2):36l–374

    Google Scholar 

  • Einsele G, Overbeck R, Schwarz HU et al (1974) Mass physical properties, sliding and erodibility of experimentally deposited and differently consolidated clayey muds. Sedimentology 21:339–372

    Article  Google Scholar 

  • Endler R (2009) Sediment physical properties of the DYNAS study area. J Marine Syst 75:317–329

    Article  Google Scholar 

  • Fukuda MK, Lick W (1980) The entrainment of cohesive sediments in freshwater. J Geophys Res 85(C5):2813–2824

    Article  Google Scholar 

  • Gage JD (1977) Structure of the abyssal macrobenthic community in the Rockall Trough. In: Keegan BF, Ceidigh PO, Boaden PJS (eds) Biology of Benthic Organisms. Pergamon Press, Oxford, pp 247–260

    Chapter  Google Scholar 

  • Grabowski RC, Droppo IG, Wharton G (2011) Erodibility of cohesive sediment: the importance of sediment properties. Earth Sci Rev 105:101–120

    Article  Google Scholar 

  • Hjulstrom F (1939) Transportation of detritus by moving water. In: Trask PD (ed) Recent marine sediments. American Association of Petroleum Geologists, Tulsa, pp 5–31

    Google Scholar 

  • Houwing E-J (1999) Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden Sea coast. Estuar Coast Shelf Sci 49:545–555

    Article  Google Scholar 

  • Jepsen R, Roberts J, Lick W (1997) Effects of bulk density on sediment erosion rates. Water Air Soil Pollut 99(1–4):21–31

    Google Scholar 

  • Jia Y, Liu X, Shan H et al (2011) The effects of hydrodynamic conditions on geotechnical strength of the sediment in Yellow River Delta. Int J Sedim Res 26:318–330

    Article  Google Scholar 

  • Jia Y, Zhang L, Zheng J et al (2014) Effects of wave-induced seabed liquefaction on sediment re-suspension in the Yellow River Delta. Ocean Eng 89:146–156

    Article  Google Scholar 

  • Kamphuis JW, Hall KR (1983) Cohesive material erosion by unidirectional current. J Hydraul Eng 109(1):49–61

    Article  Google Scholar 

  • Keller GH, Zhen J, Yang Z-S (1990) Mass physical properties of Huanghe delta and Southern Bohai Sea near-surface deposits, China. Mar Geotechnol 9:207–225

    Article  Google Scholar 

  • Li G, Zhuang K, Wei H (2000) Sedimentation in the Yellow River Delta. Part III. Seabed erosion and diapirism in the abandoned subaqueous delta lobe. Mar Geol 168:129–144

    Article  Google Scholar 

  • Liu X, Jia Y, Zheng J et al (2017) An experimental investigation of wave-induced sediment responses in a natural silty seabed: new insights into seabed stratification. Sedimentology 64:508–529

    Article  Google Scholar 

  • Liu X, Jia Y, Zheng J et al (2013a) Experimental evidence of wave-induced inhomogeneity in the strength of silty seabed sediments: Yellow River Delta, China. Ocean Eng 59:120–128

    Article  Google Scholar 

  • Liu X, Jia Y, Zheng J et al (2013b) Field and laboratory resistivity monitoring of sediment consolidation in China’s Yellow River estuary. Eng Geol 164:77–85

    Article  Google Scholar 

  • Li B, Cozzoli F, Soissons LM, Bouma TJ et al (2017) Effects of bioturbation on the erodibility of cohesive versus non-cohesive sediments along a current-velocity gradient: a case study on cockles. J Exp Mar Biol Ecol 496:84–90

    Article  Google Scholar 

  • Meng X, Jia Y, Shan H (2012) An experimental study on erodibility of intertidal sediments in the Yellow River Delta. Int J Sedim Res 27:240–249

    Article  Google Scholar 

  • Meng X, Jia Y, Song J et al (2010) Study of erodibility change of Yellow River sediment into sea in process of consolidation. Rock Soil Mech 31(12):3809–3815 (in Chinese)

    Google Scholar 

  • Mitchener H, Torfs H (1996) Erosion of mud/sand mixtures. Coast Eng 29:1–25

    Article  Google Scholar 

  • Paterson DM, Tolhurst TJ, Kelly JA et al (2000) Variations in sediment properties, Skeffling mudflat, Humber Estuary, UK. Cont Shelf Res 20:1373–1396

    Article  Google Scholar 

  • Postma H (1967) Sediment transport and sedimentation in the estuarine environment. In: Lauff GH (ed) Estuaries. American Association for the Advancement of Science, Washington, pp 158–179

    Google Scholar 

  • Prior DB, Yang ZS, Bornhold BD et al (1986) Active slope failure, sediment collapse, and silt flows on the modern subaqueous Huanghe (Yellow River) Delta. Geo-Marine Lett 6:85–95

    Article  Google Scholar 

  • Roberts J, Jepsen R, Gotthard D et al (1998) Effects of particle size and bulk density on erosion of quartz particles. J Hydraul Eng 124(12):1261–1268

    Article  Google Scholar 

  • Scoffin TP (1970) The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. J Sediment Petrol 40:249–273

    Article  Google Scholar 

  • Schünemann M, Kühl H (1993) Experimental investigations of the erosional behavior of naturally formed mud from the Elbe estuary and adjacent Wadden Sea, Germany. In: Mehta AJ (ed) Nearshore and estuarine cohesive sediment transport, American Geophysical Union. D. C, Washington

    Google Scholar 

  • Shi L, Li J, Ying M et al (2006) Erosion experiments on natural sediment from the Modern Yellow river delta. Ocean Eng 24(1):46–54 (in Chinese)

    Google Scholar 

  • Teisson C, Ockenden M, Le Hir P et al (1993) Cohesive sediment transport processes. Coast Eng 21:129–162

    Article  Google Scholar 

  • Torfs H (1997) Erosion of mixed cohesive/non-cohesive sediments in uniform flow. In: Burt N, Parker R, Watts J (eds) Cohesive sediments. Wiley, Chichester, pp 245–252

    Google Scholar 

  • Tolhurst TJ, Black KS, Shayler SA et al (1999) Measuring the in situ erosion shear stress of intertidal sediments with the Cohesive Strength Meter (CSM). Estuar Coast Shelf Sci 49:281–294

    Article  Google Scholar 

  • Tolhusrt TJ, Defew EC, de Brouwer JFC et al (2006) Small-scale temporal and spatial variability in the erosion threshold and properties of cohesive intertidal sediments. Cont Shelf Res 26:351–362

    Article  Google Scholar 

  • Watts CW, Tolhurst TJ, Black KS et al (2003) In situ measurements of erosion shear stress and geotechnical shear strength of the intertidal sediments of the experimental managed realignment scheme at Tollesbury, Essex, UK. Estuar Coast Shelf Sci 58:611–620

    Article  Google Scholar 

  • Widdows J, Brinsley MD, Salkeld PN et al (1998) Use of annular flumes to determine the influence of current velocity and bivalves on material flux at the sediment-water interface. Estuaries 51:552–559

    Article  Google Scholar 

  • Winterwerp JC, van Kesteren WGM, van Prooijen B et al (2012) A conceptual framework for shear-flow induced erosion of soft cohesive sediment beds. J Geophys Res 117:113–128

    Article  Google Scholar 

  • Zang Q (1996) Nearshore sediment along the Yellow River delta. Ocean Press, Beijing (in Chinese)

    Google Scholar 

  • Zheng J, Jia Y, Liu X (2013) Experimental study of the variation of sediment erodibility under wave-loading conditions. Ocean Eng 68:14–26

    Article  Google Scholar 

  • Zheng J, Jia Y, Liu X (2014) Sediment characteristics as a function of variable hydrodynamics in a tidal flat of the Yellow River Delta, China. J Offshore Mech Arct Eng 136:1–9

    Google Scholar 

  • Zheng J, Shan H, Jia Y et al (2011) Field tests and observation of wave-loading influence on erodibility of silty sediments in the Huanghe (Yellow River) estuary, China. J Coast Res 27:706–717

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Jia .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jia, Y., Liu, X., Zhang, S., Shan, H., Zheng, J. (2020). Erodibility of Seabed Sediments in the Modern Yellow River Delta. In: Wave-Forced Sediment Erosion and Resuspension in the Yellow River Delta. Springer Oceanography. Springer, Singapore. https://doi.org/10.1007/978-981-13-7032-8_4

Download citation

Publish with us

Policies and ethics