Skip to main content

Sediment Resuspension Process in the Modern Yellow River Delta

  • Chapter
  • First Online:
Book cover Wave-Forced Sediment Erosion and Resuspension in the Yellow River Delta

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

  • 521 Accesses

Abstract

In this chapter, the process of sediment erosion and resuspension was studied through in situ observations and wave flume experiments. Sediments are more frequently resuspended by wind waves in the Yellow River Delta, the contribution of waves and currents to sediment resuspension was evaluated while also a conceptual model for sediment resuspension in this delta area was constructed. More importantly, our wave flume experiments found that once seabed liquefaction occurred, the process of sediment resuspension could be significantly changed. More sediments would be resuspended in addition to that eroded by wave orbital velocities, and these lately resuspended sediments seems to come from the interior of the seabed, rather than seabed surface as the conventional opinion holds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldridge JN, Rees JM (1997) Interpreting observations of near-bed sediment concentration and estimation of “pick-up” function constants. In: Burt N, Parker J, Watts J (eds) Cohesive sediments. Wiley, Chichester, pp 289–303

    Google Scholar 

  • Bennett RH (1977) Pore-water pressure measurements: Mississippi delta submarine sediments. Mar Georesources Geotechnol 2(1–4):177–189

    Article  Google Scholar 

  • Bennett RH, Faris JR (1979) Ambient and dynamic pore pressures in fine-grained submarine sediments: Mississippi delta. Appl Ocean Res 1(3):115–123

    Article  Google Scholar 

  • Best JL (1989) Fluidisation pipes in volcaniclastic mass flows, Volcan Hudson, southern Chile. Terra Nova 1:203–208

    Article  Google Scholar 

  • Bian S, Hu Z, Xue Z et al (2012) An observational study of the carrying capacity of suspended sediment during a storm event. Environ Monit Assess 184(10):6037–6044

    Article  Google Scholar 

  • Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landf 26(11):1237–1248

    Article  Google Scholar 

  • Clukey EC, Kulhawy FH, Liu PLF et al (1985) The impact of wave loads and pore-water pressure generation on initiation of sediment transport. Geo-Mar Lett 5:177–183

    Article  Google Scholar 

  • De Wit PJ, Kranenburg C (1997) The wave-induced liquefaction of cohesive sediment beds. Estuar Coast Shelf Sci 45:261–271

    Article  Google Scholar 

  • Dohmen-Janssen CM, Hanes DM (2005) Sheet flow and suspended sediment due to wave groups in a large wave flume. Cont Shelf Res 25(3):333–347

    Article  Google Scholar 

  • Druitt TH (1995) Settling behaviour of concentrated dispersions and some volcanological applications. J Volcanol Geotherm Res 65:27–39

    Article  Google Scholar 

  • Fagherazzi S, Priestas AM (2010) Sediments and water fluxes in a muddy coastline: interplay between waves and tidal channel hydrodynamics. Earth Surf Process Landf 35(3):284–293

    Article  Google Scholar 

  • Feng J (1992) Laboratory experiments on cohesive soil-bed fluidisation by water waves (Thesis, Report no. UFL/COEL-92/005). University of Florida, Gainesville, USA, p 108

    Google Scholar 

  • Ferré B, Durrieu De Madron X, Estournel C et al (2008) Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean. Cont Shelf Res 28(15):2071–2091

    Article  Google Scholar 

  • Foda MA, Tzang SY (1994) Resonant fluidisation of silty soil by water waves. J Geophys Res 99–10(20):463–475

    Google Scholar 

  • Folk RL (1966) A review of grain-size parameters. Sedimentology 6(2):73–93

    Article  Google Scholar 

  • Gao S, Jia JJ (2003) Modeling suspended sediment distribution in continental shelf upwelling/downwelling settings. Geo-Mar Lett 22(4):218–226

    Article  Google Scholar 

  • Green MO, Coco G (2014) Review of wave-driven sediment resuspension and transport in estuaries. Rev Geophys 52(1):77–117

    Article  Google Scholar 

  • Guo W, Wu G, Liang B et al (2016) The influence of surface wave on water exchange in the Bohai Sea. Cont Shelf Res 118:128–142

    Article  Google Scholar 

  • Hill PS, Milligan TG, Geyer WR (2000) Controls on effective setting velocity in the Eel River flood plume. Cont Shelf Res 20:2095–2111

    Article  Google Scholar 

  • Hoque MA, Ahad BG, Saleh E (2010) Hydrodynamics and suspended sediment transport at tidal inlets of Salut Mengkabong Lagoon, Sabah, Malaysia. Int J Sediment Res 25(4):399–410

    Article  Google Scholar 

  • Houwing EJ, Nczos ICT, Kroon A et al (2002) Interaction of submerged vegetation, hydrodynamics and turbidity; analysis of field and laboratory studies. Proc Mar Sci 5:441–453

    Article  Google Scholar 

  • Jia YG, Zheng JW, Yue ZQ et al (2014) Tidal flat erosion of the Huanghe River Delta due to local changes in hydrodynamic conditions. Acta Oceanol Sin 33(7):116–124

    Article  Google Scholar 

  • Kana TW (1978) Surf zone measurements of suspended sediment. Coast Eng Proc 1(16):1725–1743

    Google Scholar 

  • Knapen A, Poesen J, Govers G et al (2007) Resistance of soils to concentrated flow erosion: a review. Earth-Sci Rev 80(1–2):75–109

    Article  Google Scholar 

  • Kong D, Miao C, Borthwick AGL et al (2015) Evolution of the Yellow River delta and its relationship with runoff and sediment load from 1983 to 2011. J Hydrol 520:157–167

    Article  Google Scholar 

  • Kong YZ, Zhu CF (2008) Experimental study on vertical sediment mixing coefficient under waves. J East China Norm Univ (Nat Sci) 6:9–13

    Google Scholar 

  • Lambrechts J, Humphrey C, Mckinna L et al (2010) Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef. Estuar Coast Shelf Sci 89:154–162

    Article  Google Scholar 

  • Liu HJ, Jeng DS (2007) A semi-analytical solution for random wave-induced soil response and seabed liquefaction in marine sediments. Ocean Eng 34:1211–1224

    Article  Google Scholar 

  • Liu SM, Li LW, Zhang GL et al (2012) Impacts of human activities on nutrient transports in the Huanghe (Yellow River) estuary. J Hydrol 430–431:103–110

    Article  Google Scholar 

  • Liu Z, Jeng DS, Chan AH et al (2009) Wave-induced progressive liquefaction in a poro-elastoplastic seabed: a two-layered model. Int J Numer Anal Methods Geomech 33(5):591–610

    Article  Google Scholar 

  • Madsen OS (1978) Wave induced pore pressures and effective stresses in a porous bed. Geotechnique 28:377–393

    Article  Google Scholar 

  • Ma R, Cai C, Wang J et al (2015) Partial least squares regression for linking aggregate pore characteristics to the detachment of undisturbed soil by simulating concentrated flow in Ultisols (subtropical China). J Hydrol 524:44–52

    Article  Google Scholar 

  • Maa PY, Mehta AJ (1987) Mud erosion by waves: a laboratory study. Cont Shelf Res 7:1269–1284

    Article  Google Scholar 

  • McDougal WG, Tsai YT, Liu PL-F et al (1989) Wave-induced pore-water pressure accumulation in marine soils. J Offshore Mech Arct Eng 111:1–11

    Article  Google Scholar 

  • Minella JPG, Merten GH, Reichert JM et al (2008) Estimating suspended sediment concentrations from turbidity measurements and the calibration problem. Hydrol Process 22(12):1819–1830

    Article  Google Scholar 

  • Myrhaug D, Holmedal LE, Ong MC (2014) Seepage effects on bedload sediment transport rate by random waves. Ocean Eng 82:123–127

    Article  Google Scholar 

  • Ni JR, Meng XG (2001) Forces on particles and their effects on vertical sediment sorting in solid-liquid two- phase flows. Int J Sedim Res 16–2:128–138

    Google Scholar 

  • Nichols RJ, Sparks RSJ, Wilson CJN (1994) Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures. Sedimentology 41(2):233–253

    Article  Google Scholar 

  • Obhrai C, Nielsen P, Vincent CE (2002) Influence of infiltration on suspended sediment under waves. Coast Eng 45:111–123

    Article  Google Scholar 

  • Pang CG, Yu W, Yang Y et al (2011) An improved method for evaluating the seasonal variability of total suspended sediment flux field in the Yellow and East China Seas. Int J Sedim Res 26(1):1–14

    Article  Google Scholar 

  • Park YA, Choi JY, Gao S (2001) Spatial variation of suspended particulate matter in the Yellow Sea. Geo-Mar Lett 20(4):196–200

    Article  Google Scholar 

  • Pavanelli D, Bigi A (2005) Indirect methods to estimate suspended sediment concentration: reliability and relationship of turbidity and settleable solids. Biosyst Eng 90(1):75–83

    Article  Google Scholar 

  • Pholkern K, Srisuk K, Grischek T et al (2015) Riverbed clogging experiments at potential river bank filtration sites along the Ping River, Chiang Mai, Thailand. Environ Earth Sci 73(12):7699–7709

    Article  Google Scholar 

  • Podsechin V, Tejakusuma I, Schernewski G et al (2006) On parameters estimation in dynamic model of suspended sediments. J Hydrol 318(1–4):17–23

    Article  Google Scholar 

  • Precht E, Huettel M (2004) Rapid wave-driven advective pore water exchange in a permeable coastal sediment. J Sea Res 51:93–107

    Article  Google Scholar 

  • Prior DB, Suhayda JN, Lu NZ et al (1989) Storm wave reactivation of a submarine landslide. Nature 341(6237):47–50

    Article  Google Scholar 

  • Putnam JA (1949) Loss of wave energy due to percolation in a permeable sea bottom. EOS Trans Am Geophys Union 30:349–356

    Article  Google Scholar 

  • Rajaee T, Mirbagheri SA, Zounemat-Kermani M et al (2009) Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci Total Environ 407(17):4916–4927

    Article  Google Scholar 

  • Saito Y, Wei H, Zhou Y et al (2000) Delta progradation and chenier formation in the Huanghe (Yellow River) delta, China. J Asian Earth Sci 18(4):489–497

    Article  Google Scholar 

  • Schoellhamer DH (2002) Comparison of the basin-scale effect of dredging operations and natural estuarine processes on suspended sediment concentration. Estuaries 25(3):488–495

    Article  Google Scholar 

  • Shepard FP (1954) Nomenclature based on sand–silt–clay rations. J Sediment Petrol 24:151–158

    Article  Google Scholar 

  • Slaets JIF, Schmitter P, Hilger T et al (2014) A turbidity-based method to continuously monitor sediment, carbon and nitrogen flows in mountainous watersheds. J Hydrol 513:45–57

    Article  Google Scholar 

  • Suhayda JN (1984) Interaction between surface waves and muddy bottom sediments. In: Mehta AJ (ed) Estuarine cohesive sediment dynamics. Springer, Berlin, pp 401–428

    Google Scholar 

  • Sumer BM, Hatipoglu F, Fredsøe J (2004) The cycle of soil behaviour during wave liquefaction. In: Proceedings of the 29th international conference on coastal engineering, Lisbon, Portugal, 19–24 September

    Google Scholar 

  • Sumer BM, Hatioglu F, Fredsøe J et al (2006) The sequence of sediment behaviour during wave-induced liquefaction. Sedimentology 53:611–629

    Article  Google Scholar 

  • Sumer BM, Kirca VSO, Fredsøe J (2012) Experimental validation of a mathematical model for seabed liquefaction under waves. Int J Offshore Polar Eng 22(2):1–9

    Google Scholar 

  • Tréhu AM (2016) Measuring slow slip offshore. Science 352(6286):654–655

    Article  Google Scholar 

  • Tzang SY (1992) Water wave-induced soil fluidisation in a cohesionless finegrained seabed (PhD thesis). University of California, Berkeley, USA

    Google Scholar 

  • Tzang SY (1998) Unfluidized soil responses of a silty seabed to monochromatic waves. Coast Eng 35:283–301

    Article  Google Scholar 

  • Tzang SY, Ou SH (2006) Laboratory flume studies on monochromatic wave-fine sandy bed interactions: part 1. Soil fluidisation. Coast Eng 53(11):965–982

    Article  Google Scholar 

  • Tzang SY, Ou SH, Hsu TW (2009) Laboratory flume studies on monochromatic wave-fine sandy bed interactions: part 2. Sediment suspensions. Coast Eng 56(3):230–243

    Article  Google Scholar 

  • Van Kessel T, Kranenburg C (1998) Wave-induced liquefaction and flow of subaqueous mud layers. Coast Eng 34:109–127

    Article  Google Scholar 

  • Vincent CE, Hanes DM (2002) The accumulation and decay of near-bed suspended sand concentration due to waves and wave groups. Cont Shelf Res 22(14):1987–2000

    Article  Google Scholar 

  • Voulgaris G, Collins MB (2000) Sediment resuspension on beaches: response to breaking waves. Mar Geol 167:167–187

    Article  Google Scholar 

  • Wang H, Bi N, Wang Y et al (2010) Tide-modulated hyperpycnal flows off the Huanghe (Yellow River) mouth, China. Earth Surf Process Landf 35(11):1315–1329

    Article  Google Scholar 

  • Wang YH (2003) The intertidal erosion rate of cohesive sediment: a case study from Long Island sound. Estuaine Coast Shelf Sci 56(5–6):891–896

    Article  Google Scholar 

  • Winterwerp JC, van Kesteren WGM, van Prooijen B et al (2012) A conceptual framework for shear-flow induced erosion of soft cohesive sediment beds. J Geophys Res 117:C10020

    Article  Google Scholar 

  • Wright LD, Yang ZS, Bornhold BD et al (1986) Hyperpycnal plumes and plume fronts over the Huanghe (Yellow River) delta front. Geo-Mar Lett 6(2):97–105

    Article  Google Scholar 

  • Wright LD, Friedrichs CT, Kim SC et al (2001) Effects of ambient currents and waves on gravity-driven sediment transport on continental shelves. Mar Geol 175:25–45

    Article  Google Scholar 

  • Xia XM, Li Y, Yang H et al (2004) Observations on the size and settling velocity distributions of suspended sediments in the Pearl River Estuary, China. Cont Shelf Res 24:1809–1826

    Article  Google Scholar 

  • Xie M, Zhang W, Guo W (2010) A validation concept for cohesive sediment transport model and application on Lianyungang Harbor, China. Coast Eng 57(6):585–596

    Article  Google Scholar 

  • Yamamoto T (1982) Experiments of wave-driven soil transport in clay beds. Geo-Mar Lett 2(3–4):205–208

    Article  Google Scholar 

  • Yang SL, Li P, Gao A et al (2007) Cyclical variability of suspended sediment concentration over a low-energy tidal flat in Jiaozhou Bay, China: effect of shoaling on wave impact. Geo-Mar Lett 27(5):345–353

    Article  Google Scholar 

  • Zhang J, Huang WW, Shi MC (1990) Huanghe (Yellow River) and its estuary: sediment origin, transport and deposition. J Hydrol 120(1–4):203–223

    Article  Google Scholar 

  • Zen K, Yamazaki H (1990) Mechanism of wave-induced liquefaction and densification in seabed. Soil Found 30(4):90–104

    Article  Google Scholar 

  • Zheng W, Ye T, You S et al (2015) The thermal performance of seawater-source heat pump systems in areas of severe cold during winter. Energy Convers Manag 90:166–174

    Article  Google Scholar 

  • Zhu C, Wang Q, Jia Y et al (2015) Numerical analysis on the ultimate bearing capacity and parameter selection of U-shaped confined concrete short column. Electron J Geotech Eng 20(26):13051–13062

    Google Scholar 

  • Zhu C, Jia Y, Wang Z et al (2017) Dynamics of bottom boundary layers in the Yellow River subaqueous delta based on long-term in-situ observations. Acta Geol Sin-Engl Ed 91(1):369–370

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Jia .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jia, Y., Liu, X., Zhang, S., Shan, H., Zheng, J. (2020). Sediment Resuspension Process in the Modern Yellow River Delta. In: Wave-Forced Sediment Erosion and Resuspension in the Yellow River Delta. Springer Oceanography. Springer, Singapore. https://doi.org/10.1007/978-981-13-7032-8_5

Download citation

Publish with us

Policies and ethics