Skip to main content

Identification of Malignancy from Cytological Images Based on Superpixel and Convolutional Neural Networks

  • Chapter
  • First Online:
Intelligent Computing Paradigm: Recent Trends

Part of the book series: Studies in Computational Intelligence ((SCI,volume 784))

Abstract

This chapter explores two methodologies for classification of cytology images into benign and malignant. Heading toward the automated analysis of the images to eradicate human intervention, this chapter draws curtain from the history of automated CAD-based design system for better understanding of the roots of the evolving image processing techniques in the analysis of biomedical images. Our first approach introduces the clustering-based approach to segment the nucleus region from the rest. After segmentation, nuclei features are extracted based on which classification is done using some standard classifiers. The second perspective suggests the usage of deep-learning-based techniques such as ResNet and InceptionNet-v3. In this case, classification is done with and without segmented images but not using any handcrafted features. The analysis provides results in favor of CNN where the average performances are found better than the existing result using feature-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sagawa, M., Usuda, K., Aikawa, H., et al.: Screening for lung cancer: present and future. Gan To Kagaku Ryoho 39, 19–22 (2012)

    Google Scholar 

  2. Xian, G.M.: An identification method of malignant and benign liver tumors from ultrasonography based on GLCM texture features and fuzzy SVM. Expert Syst. Appl. 37, 6737–6741 (2010). https://doi.org/10.1016/j.eswa.2010.02.067

    Article  Google Scholar 

  3. Muhammad Hussain NK (2012) AUTOMATIC MASS DETECTION IN MAMMOGRAMS USING MULTISCALE SPATIAL WEBER LOCAL DESCRIPTOR. IWSSIP 2012

    Google Scholar 

  4. Domanski, H.A.: Fine-needle aspiration cytology of soft tissue lesions: diagnostic challenges. Diagn. Cytopathol. 35, 768–773 (2007). https://doi.org/10.1002/dc.20765

    Article  Google Scholar 

  5. Lopes Cardozo, P.: The significance of fine needle aspiration cytology for the diagnosis and treatment of malignant lymphomas. Folia Haematol. Int. Mag. Klin Morphol. Blutforsch. 107, 601–620 (1980)

    Google Scholar 

  6. Tucker, J.H.: Cerviscan: an image analysis system for experiments in automatic cervical smear prescreening. Comput. Biomed Res. (1976). https://doi.org/10.1016/0010-4809(76)90033-1

    Article  Google Scholar 

  7. Zahniser, D.J., Oud, P.S., Raaijmakers, M.C.T., et al.: BioPEPR: a system for the automatic prescreening of cervical smears. J. Histochem. Cytochem. 27, 635–641 (1979). https://doi.org/10.1177/27.1.86581

    Article  Google Scholar 

  8. Vrolijk, J., Pearson, P.L., Ploem, J.S.: LEYTAS: a system for the processing of microscopic images. Anal. Quant. Cytol. (1980)

    Google Scholar 

  9. Street, W.N.: Xcyt: a system for remote cytological diagnosis and prognosis of breast cancer. In: Artificial Intelligence Techniques in Breast Cancer Diagnosis and Prognosis, pp. 297–326. World Scientific Publishing (2000)

    Google Scholar 

  10. Zhang, L., Chen, S., Wang, T., et al.: A practical segmentation method for automated screening of cervical cytology. In: 2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation (2011). https://doi.org/10.1109/icbmi.2011.4

  11. Zhang, L., Kong, H., Chin, C.T., et al.: Segmentation of cytoplasm and nuclei of abnormal cells in cervical cytology using global and local graph cuts. Comput. Med. Imaging Graph. 38, 369–380 (2014). https://doi.org/10.1016/j.compmedimag.2014.02.001

    Article  Google Scholar 

  12. Zhao, L., Li, K., Wang, M., et al.: Automatic cytoplasm and nuclei segmentation for color cervical smear image using an efficient gap-search MRF. Comput. Biol. Med. (2016). https://doi.org/10.1016/j.compbiomed.2016.01.025

    Article  Google Scholar 

  13. Li, K., Lu, Z., Liu, W., Yin, J.: Cytoplasm and nucleus segmentation in cervical smear images using Radiating GVF Snake. Pattern Recognit. (2012). https://doi.org/10.1016/j.patcog.2011.09.018

    Article  Google Scholar 

  14. Chankong, T., Theera-Umpon, N., Auephanwiriyakul, S.: Automatic cervical cell segmentation and classification in PAP smears. Comput. Methods Programs Biomed. 113 (2014)

    Article  Google Scholar 

  15. George, Y.M., Zayed, H.H., Roushdy, M.I., Elbagoury, B.M.: Remote computer-aided breast cancer detection and diagnosis system based on cytological images. IEEE Syst. J. 8, 949–964 (2014). https://doi.org/10.1109/JSYST.2013.2279415

    Article  Google Scholar 

  16. Yang, X., Li, H., Zhou, X.: Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE Trans. Circ. Syst. I Regul. Pap. 53, 2405–2414 (2006). https://doi.org/10.1109/TCSI.2006.884469

    Article  Google Scholar 

  17. Hrebień, M., Korbicz, J., Obuchowicz, A.: Hough transform, (1 + 1) search strategy and watershed algorithm in segmentation of cytological images. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Advances in Soft Computing, pp. 550–557. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  18. Garud, H., Karri, S.P.K., Sheet, D., et al.: High-magnification multi-views based classification of breast fine needle aspiration cytology cell samples using fusion of decisions from deep convolutional networks. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2017)

    Google Scholar 

  19. Dey, P., Logasundaram, R., Joshi, K.: Artificial neural network in diagnosis of lobular carcinoma of breast in fine-needle aspiration cytology. Diagn. Cytopathol. 41, 102–106 (2011). https://doi.org/10.1002/dc.21773

    Article  Google Scholar 

  20. Isa, N.A.M., Subramaniam, E., Mashor, M.Y., Othman, N.H.: Fine needle aspiration cytology evaluation for classifying breast cancer using artificial neural network. Am. J. Appl. Sci. 4, 999–1008 (2007)

    Article  Google Scholar 

  21. Braz, E.F., Lotufo, R.D.A.: Nuclei detection using deep learning. In: Brazilian Symposium on Telecommunications and Processing of Signals, pp. 1059–1063 (2017)

    Google Scholar 

  22. Tareef, A., Song, Y., Huang, H., et al.: Optimizing the cervix cytological examination based on deep learning and dynamic shape modeling. Neurocomputing 248, 28–40 (2017). https://doi.org/10.1016/j.neucom.2017.01.093

    Article  Google Scholar 

  23. Weickert, J.: Anisotropic diffusion in image processing. Image Rochester NY 256:170 (1998). http://doi.org/10.1.1.11.751

  24. Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. 6, 1–8 (2011)

    Google Scholar 

  25. Sander, J., Ester, M., Kriegel, H.-P., Xu, X.: Density-Based clustering in spatial databases: the algorithm GDBSCAN and Its applications. Data Min. Knowl. Discov. 2, 169–194 (1998). https://doi.org/10.1023/A:1009745219419

    Article  Google Scholar 

  26. Luukka, P.: Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst. Appl. 38, 4600–4607 (2011). https://doi.org/10.1016/j.eswa.2010.09.133

    Article  Google Scholar 

  27. Liu, M., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel segmentation. In: CVPR 2011, pp. 2097–2104 (2011)

    Google Scholar 

  28. Mitra, S., Dey, S., Das, N., et al.: Identification of Benign and Malignant Cells from cytological images using superpixel based segmentation approach. In: Mandal, J.K., Sinha, D. (eds.) 52nd Annual Convention of CSI 2018: Social Transformation—Digital Way, pp. 257–269. Springer, Singapore (2018)

    Google Scholar 

  29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Alexnet. Adv. Neural Inf. Process. Syst. (2012). http://dx.doi.org/10.1016/j.protcy.2014.09.007

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  31. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). CoRR abs/1512.0

    Google Scholar 

  33. Szegedy, C., Vanhoucke, V., Ioffe, S., et al.: Rethinking the inception architecture for computer vision (2015). CoRR abs/1512.0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibaran Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, S., Dey, S., Das, N., Chakrabarty, S., Nasipuri, M., Naskar, M.K. (2020). Identification of Malignancy from Cytological Images Based on Superpixel and Convolutional Neural Networks. In: Mandal, J., Sinha, D. (eds) Intelligent Computing Paradigm: Recent Trends. Studies in Computational Intelligence, vol 784. Springer, Singapore. https://doi.org/10.1007/978-981-13-7334-3_8

Download citation

Publish with us

Policies and ethics