Skip to main content

Abstract

One critical aspect before assessing the geotechnical system deformation or stability conditions (responses) is the determination of the limit state surface numerically represented by limit state functions (or performance functions). In many complicated and nonlinear problems where the analyses involve the use of numerical procedures such as the finite element method, this surface may be difficult to determine explicitly in terms of the random variables, and therefore, the limit state function can only be expressed implicitly rather than in a closed-form solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adoko AC, Jiao YY, Wu L, Wang H, Wang ZH (2013) Predicting tunnel convergence using multivariate adaptive regression spline and artificial neural network. Tunn Undergr Space Technol 38(3):368–376

    Article  Google Scholar 

  • Attoh-Okine NO, Mensah S, Nawaiseh M (2003) A new technique for using multivariate adaptive regression splines (mars) in pavement roughness prediction. Transport 156(1):51–56

    Google Scholar 

  • Attoh-Okine NO, Cooger K, Mensah S (2009) Multivariate adaptive regression (MARS) and hinged hyperplanes (HHP) for doweled pavement performance modeling. J Constr Build Mater 23:3020–3023

    Article  Google Scholar 

  • Barzegar R, Moghaddam AA, Deo R, Fijani E, Tziritis E (2018) Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms. Sci Total Environ 621:697–712

    Article  Google Scholar 

  • Basarir H (2008) Analysis of rock-support interaction using numerical and multiple regression modeling. Can Geotech J 45:1–13

    Article  Google Scholar 

  • Baziar MH, Jafarian Y (2007) Assessment of liquefaction triggering using strain energy concept and ANN model capacity energy. Soil Dyn Earthq Eng 27:1056–1072

    Article  Google Scholar 

  • Bhattacharya S, Murakonda P, Das S (2018) Prediction of uplift capacity of suction caisson in clay using functional network and multivariate adaptive regression spline. 25(2):1–14

    Google Scholar 

  • Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions (with discussion). J Roy Stat Soc B 13(1):1–45

    MATH  Google Scholar 

  • Cao MS, Qiao PZ (2008) Neural network committee-based sensitivity analysis strategy for geotechnical engineering problems. Neural Comput Appl 17:509–519

    Article  Google Scholar 

  • Cha YJ, Choi W (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civil Infrastruct Eng 32:361–378

    Article  Google Scholar 

  • Chatzi EN, Hiriyur B, Waisman H, Smyth AW (2011) Experimental application and enhancement of the XFEM–GA algorithm for the detection of flaws in structures. Comput Struct 89(7):556–570

    Article  Google Scholar 

  • Chen W, Pourghasemi HR, Naghibi SA (2018) Prioritization of landslide conditioning factors and its spatial modeling in shangnan county, China using GIS-based data mining algorithms. Bull Eng Geol Env 77(2):611–629

    Article  Google Scholar 

  • Conforti M, Pascale S, Robustelli G, Sdao F (2014) Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). CATENA 113:236–250

    Article  Google Scholar 

  • Conoscenti C, Ciaccio M, Caraballo-Arias NA, Rotigliano E, Agnesi V (2015) Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: a case of the Belice River Basin (western Sicily, Italy). Geomorphology 242(49):49–64

    Article  Google Scholar 

  • Conoscenti C, Rotigliano E, Cama M, Caraballo-Arias NA, Lombardo L, Agnesi V (2016) Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily, Italy. Geomorphology 261:222–235

    Article  Google Scholar 

  • Das SK, Suman S (2015) Prediction of lateral load capacity of pile in clay using multivariate adaptive regression spline and functional network. Arab J Sci Eng 40(6):1565–1578

    Article  Google Scholar 

  • Felicísimo ÁM, Cuartero A, Remondo J, Quirós E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10(2):175–189

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141

    Article  MathSciNet  MATH  Google Scholar 

  • Ganesh R, Khuntia S (2017) Estimation of pullout capacity of vertical plate anchors in cohesionless soil using mars. Geotech Geol Eng 2:1–11

    Google Scholar 

  • Gao W, He TY (2017) Displacement prediction in geotechnical engineering based on evolutionary neural network. Geomech Eng 13:845–860

    Google Scholar 

  • Gao XC, Liu HL, Zhang WG, Wang W, Wang ZY (2018) Influences of reservoir water level drawdown on slope stability and reliability analysis. Georisk. https://doi.org/10.1080/17499518.2018.1516293

    Google Scholar 

  • Goh ATC (1994) Seismic liquefaction potential assessed by neural networks. J Geotech Eng 120(9):1467–1480

    Article  Google Scholar 

  • Goh ATC (1995) Modeling soil correlations using neural networks. J Comput Civil Eng 9:275–278

    Article  Google Scholar 

  • Goh ATC (1996) Neural-network modeling of CPT seismic liquefaction data. J Geotech Eng 122(1):70–73

    Article  Google Scholar 

  • Goh ATC (2002) Probabilistic neural network for evaluating seismic liquefaction potential. Can Geotech J 39:219–232

    Article  Google Scholar 

  • Goh ATC, Kulhawy FH (2003) Neural network approach to model the limit state surface for reliability analysis. Can Geotech J 40:1235–1244

    Article  Google Scholar 

  • Goh ATC, Zhang WG (2012) Reliability assessment of stability of underground rock caverns. Int J Rock Mech Min Sci 55:157–163

    Article  Google Scholar 

  • Goh ATC, Zhang WG (2014) An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines. Eng Geol 170:1–10

    Article  Google Scholar 

  • Goh ATC, Fan Zhang, Zhang WG, Zhang YM, Hanlong Liu (2017a) A simple estimation model for 3D braced excavation wall deflection. Comput Geotech 83:106–113

    Article  Google Scholar 

  • Goh ATC, Zhang YM, Zhang RH, Zhang WG, Xiao Y (2017b) Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression. Tunn Undergr Space Technol 70:148–154

    Article  Google Scholar 

  • Goh ATC, Zhang WG, Zhang YM, Xiao Y, Xiang YZ (2018) Determination of EPB tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach. Bull Eng Geol Env 77:489–500

    Article  Google Scholar 

  • Haghiabi AH (2016) Prediction of river pipeline scour depth using multivariate adaptive regression splines. J Pipeline Syst Eng Pract 8(1):04016015

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: Data mining, inference and prediction, 2nd edn. Springer

    Google Scholar 

  • Jekabsons G (2010) VariReg: a software tool for regression modeling using various modeling methods. Riga Technical University. http://www.cs.rtu.lv/jekabsons/

  • Juang CH, Chen CJ (1999) CPT-based liquefaction evaluation using artificial neural networks. Comput Aided Civ Infrastruct Eng 14(3):221–229

    Article  Google Scholar 

  • Kabir E, Guikema S, Kane B (2018) Statistical modeling of tree failures during storms. Reliab Eng Syst Saf 177:68–79

    Article  Google Scholar 

  • Kaloop MR, Hu JW, Elbeltagi E (2018) Pile-raft settlements prediction under coupled static-dynamic loads using four heuristic regression approaches. Shock Vibr. https://doi.org/10.1155/2018/3425461

    Article  Google Scholar 

  • Khuntia S, Mujtaba H, Patra C, Farooq K, Sivakugan N, Das BM (2015) Prediction of compaction parameters of coarse grained soil using multivariate adaptive regression splines (mars). Int J Geotech Eng 9(1):79–88

    Article  Google Scholar 

  • Kordnaeij A, Kalantary F, Kordtabar B et al (2015) Prediction of recompression index using GMDH-type neural network based on geotechnical soil properties. Soils Found 55:1335–1345

    Article  Google Scholar 

  • Liu Z (2012) Prediction of lateral spread displacement: data-driven approaches. Bull Earthq Eng 10(5):1431–1454

    Article  Google Scholar 

  • Liu LL, Cheng YM (2016) Efficient system reliability analysis of soil slopes using multivariate adaptive regression splines-based monte carlo simulation. Comput Geotech 79:41–54

    Article  Google Scholar 

  • Lü Q, Low BK (2011) Probabilistic analysis of underground rock excavations using response surface method and SORM. Comput Geotech 38(8):1008–1021

    Article  Google Scholar 

  • Lü Q, Chan CL, Low BK (2012) Probabilistic evaluation of ground-support interaction for deep rock excavation using artificial neural network and uniform design. Tunn Undergr Space Technol 32:1–18

    Article  Google Scholar 

  • Lü Q, Xiao ZP, Ji J, Zheng J (2017) Reliability based design optimization for a rock tunnel support system with multiple failure modes using response surface method. Tunn Undergr Space Technol 70:1–10

    Article  Google Scholar 

  • Lü Q, Xiao ZP, Zheng J, Shang YQ (2018) Probabilistic assessment of tunnel convergence considering spatial variability in rock mass properties using interpolated autocorrelation and response surface method. Geoscience Frontiers. Online https://doi.org/10.1016/j.gsf.2017.08.007

    Article  Google Scholar 

  • Metya S, Mukhopadhyay T, Adhikari S, Bhattacharya G (2017) System reliability analysis of soil slopes with general slip surfaces using multivariate adaptive regression splines. Comput Geotech 87:212–228

    Article  Google Scholar 

  • Mohamed ES, Saleh AM, Belal AB, Gad A (2017) Application of near-infrared reflectance for quantitative assessment of soil properties. Egypt J Remote Sens Space Sci 21(1)

    Article  Google Scholar 

  • Mohanty R, Suman S, Das SK (2016) Prediction of vertical pile capacity of driven pile in cohesionless soil using artificial intelligence techniques. Int J Geotech Eng 12:209–216

    Article  Google Scholar 

  • Mollon G, Dias D, Soubra AH (2009) Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology. J Geotech Geoenviron Eng, ASCE 135(9):1314–1325

    Article  Google Scholar 

  • Muduli PK, Das MR, Das SK, Senapati S (2015) Lateral load capacity of piles in clay using genetic programming and multivariate adaptive regression spline. Indian Geotech J 45(3):349–359

    Article  Google Scholar 

  • Pourghasemi HR, Rahmati O (2017) Prediction of the landslide susceptibility: which algorithm, which precision? Catena. https://doi.org/10.1016/j.catena.2017.11.022

    Article  Google Scholar 

  • Pourghasemi HR, Rossi M (2017) Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between glm, gam, mars, and m-ahp methods. Theoret Appl Climatol 130(1–2):1–25

    Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25:747–759

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representation by error propagation. In Rumelhart DE, McClelland JL (eds) Parallel distributed processing, vol 1, MIT Press, Cambridge, pp 318–362

    Google Scholar 

  • Samui P (2013) Multivariate adaptive regression spline (mars) for prediction of elastic modulus of jointed rock mass. Geotech Geol Eng 31(1):249–253

    Article  Google Scholar 

  • Samui P, Das S, Kim D (2011) Uplift capacity of suction caisson in clay using multivariate adaptive regression spline. Ocean Eng 38(17):2123–2127

    Article  Google Scholar 

  • Samui P, Kim D (2012) Modelling of reservoir-induced earthquakes: a multivariate adaptive regression spline. J Geophys Eng 9(5):494–497

    Article  Google Scholar 

  • Samui P, Kim D (2013) Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Comput Appl 23(3–4):1123–1127

    Article  Google Scholar 

  • Samui P, Kim D, Viswanathan R (2015) Spatial variability of rock depth using adaptive neuro-fuzzy inference system (anfis) and multivariate adaptive regression spline (mars). Environ Earth Scie 73(8):4265–4272

    Article  Google Scholar 

  • Samui P, Kurup P, Dhivya S, Jagan J (2016) Reliability analysis of quick sand condition. Geotech Geol Eng 34(2):579–584

    Article  Google Scholar 

  • Shabin MA, Maier HR, Jaksa MB (2004) Data division for developing neural networks applied to geotechnical engineering. J Comput Civil Eng 18:105–114

    Article  Google Scholar 

  • Shahin MA, Maier HR, Jaksa MB (2002) Predicting settlement of shallow foundations using neural networks. J Geotech Geoenviron Eng 128:785–793

    Article  Google Scholar 

  • Shahr-Babak MM, Khanjani MJ, Qaderi K (2016) Uplift capacity prediction of suction caisson in clay using a hybrid intelligence method (gmdh-hs). Appl Ocean Res 59:408–416

    Article  Google Scholar 

  • Shi J, Ortigao JAR, Bai J (1998) Modular neural networks for predicting settlements during tunneling. J Geotech Geoenviron Eng, ASCE 124(5):389–395

    Article  Google Scholar 

  • Shooshpasha I, Amiri I, MolaAbasi H (2015) An investigation of friction angle correlation with geotechnical properties for granular soils using GMDH type neural networks. Scientia Iranica 22:157–164

    Google Scholar 

  • Siahmansouri A, Gholamnejad J, Marji MF (2012) A new method to predict ratio of width to height rock pillar in twin circular tunnels. J Geol Geosci 1:103. 1:1, https://doi.org/10.4172/jgg.1000103

  • Suman S, Das SK, Mohanty R (2016a) Prediction of friction capacity of driven piles in clay using artificial intelligence techniques. Int J Geotech Eng 10(5):469–475

    Article  Google Scholar 

  • Suman S, Mahamaya M, Das SK (2016b) Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques. Int J Geosynthetics Ground Eng 2:11

    Article  Google Scholar 

  • Vorpahl P, Elsenbeer H, Märker M, Schröder B (2012) How can statistical models help to determine driving factors of landslides? Ecol Model 239(1):27–39

    Article  Google Scholar 

  • Wang LJ, Guo M, Sawada K, Lin J, Zhang J (2015) Landslide susceptibility mapping in Mizunami City, Japan: a comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. CATENA 135:271–282

    Article  Google Scholar 

  • Xiang YZ, Goh ATC, Zhang WG, Zhang RH (2018) A multivariate adaptive regression splines model for estimation of maximum wall deflections induced by braced excavation in clays. Geomech Eng 14(4):315–324

    Google Scholar 

  • Yang Y, Zhang Q (1997) A hierarchical analysis for rock engineering using artificial neural networks. Rock Mech Rock Eng 30(4):207–222

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35:1125–1138

    Article  Google Scholar 

  • Young Su K, Byung Tak K (2006) Use of artificial neural networks in the prediction of liquefaction resistance of sands. J Geotech Geoenviron Eng 132(11):1502–1504

    Article  Google Scholar 

  • Zeng P, Senent S, Jimenez R (2014) Reliability analysis of circular tunnel face stability obeying Hoeke Brown failure criterion considering different distribution types and correlation structures. J Comput Civil Eng 30:04014126

    Article  Google Scholar 

  • Zhang WG, Goh ATC (2013) Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Comput Geotech 48:82–95

    Article  Google Scholar 

  • Zhang WG, Goh ATC (2014) Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns. Geomech Eng 7(4):431–458

    Article  Google Scholar 

  • Zhang WG, Goh ATC (2015) Regression models for estimating ultimate and serviceability limit states of underground rock caverns. Eng Geol 188:68–76

    Article  Google Scholar 

  • Zhang WG, Goh ATC (2016) Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression. Geomech Eng 10(3):269–284

    Article  Google Scholar 

  • Zhang WG, Goh ATC, Zhang YM, Chen YM, Xiao Y (2015) Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines. Eng Geol 188:29–37

    Article  Google Scholar 

  • Zhang WG, Zhang RH, Goh ATC (2017a) Multivariate adaptive regression splines approach to estimate lateral wall deflection profiles caused by braced excavations in clays. Geotech Geol Eng 36(2):1349–1363

    Google Scholar 

  • Zhang WG, Zhang YM, Goh ATC (2017b) Multivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavation. Tunn Undergr Space Technol 64:24–33

    Article  Google Scholar 

  • Zhang RH, Zhang WG, Goh ATC (2018) Numerical investigation of pile responses caused by adjacent braced excavation in soft clays. Int J Geotech Eng. https://doi.org/10.1080/19386362.2018.1515810

  • Zhu AX (2000) Mapping soil landscape as spatial continua: the neural network approach. Water Resour Res 36:663–677

    Article  Google Scholar 

  • Zhu WS, Sui B, Li XJ, Li SC, Wang WT (2008) A methodology for studying the high wall displacement of large scale underground cavern complexes and its applications. Tunn Undergr Space Technol 23:651–664

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W. (2020). A Review of Surrogate Models. In: MARS Applications in Geotechnical Engineering Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-7422-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7422-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7421-0

  • Online ISBN: 978-981-13-7422-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics