Skip to main content

MARS Use for Inverse Analysis of Soil and Wall Properties in Braced Excavation

  • Chapter
  • First Online:
MARS Applications in Geotechnical Engineering Systems
  • 469 Accesses

Abstract

As mentioned in Chap. 5, a major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Calvello M, Finno RJ (2004) Selecting parameters to optimize in model calibration by inverse analysis. Comput Geotech 31(5):411–425

    Article  Google Scholar 

  • Chiu CF, Yan WM, Yuen KV (2012) Estimation of water retention curve of granular soils from particle size distribution—a Bayesian probabilistic approach. Can Geotech J 49(9):1024–1035

    Article  Google Scholar 

  • Fang ML (1987) A deep excavation in Taipei Basin. In: Ninth Southeast Asian Geotechnical Conference 1987, Bangkok, 1:35–42

    Google Scholar 

  • Fang TC, Tsai YY, Su TC, Tsung P, Seeley P (2004) A case study on time-dependent displacement of diaphragm wall induced by creep of soft clay. In: Proceedings of 5th cross-strait Geotechnics Seminars, 9–11 Nov. 2004; Taipei, pp 283–290

    Google Scholar 

  • Finno RJ, Calvello M (2005) Supported excavations: observational method and inverse modeling. J Geotechn Geoenvironmental Eng 131(7):826–836

    Article  Google Scholar 

  • Gioda G (1985) Some remarks on back analysis and characterization problems in geomechanics. In: Proceedings of 5th international conference on numerical methods in geomechanics 1985; Nagoya, Japan. Balkema, Rotterdam, pp 47–61

    Google Scholar 

  • Goh ATC, Wong KS, Teh CI, Wen D (2003) Pile response adjacent to braced excavation. J Geotechn Geoenvironmental Eng 129:383–386

    Article  Google Scholar 

  • Hashash Y, Levasseur S, Osouli A, Finno R, Malecot Y (2010) Comparison of two inverse analysis techniques for learning deep excavation response. Comput Geotech 37:323–333

    Article  Google Scholar 

  • Juang CH, Ching J, Wang L, Khoshnevisan S, Ku CS (2013a) Simplified procedure for estimation of liquefaction-induced settlement and site-specific probabilistic settlement exceedance curve using cone penetration test (CPT). Can Geotech J 50(10):1055–1066

    Article  Google Scholar 

  • Juang CH, Luo Z, Atamturktur S, Huang H (2013b) Bayesian updating of soil parameters for braced excavations using field observations. J Geotechn Geoenvironmental Eng 139:395–406

    Article  Google Scholar 

  • Koutsoftas DC, Frobenius P, Wu CL, Meyersohn D, Kulesza R (2000) Deformations during cut-and cover construction of MUNI Metro Turnback project. J Geotechn Geoenvironmental Eng 126:344–359

    Article  Google Scholar 

  • Kung GTC, Hsiao ECL, Juang CH (2007) Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements. Can Geotech J 44:726–736

    Article  Google Scholar 

  • Lecampion B, Constantinescu A, Nguyen Minh D (2002) Parameter identification for lined tunnels in viscoplastic medium. Int J Numer Anal Meth Geomech 26:1191–1211

    Article  Google Scholar 

  • Levasseur S, Malécot Y, Boulon M, Flavigny E (2008) Soil parameter identification using a genetic algorithm. Int J Numer Anal Meth Geomech 32:189–213

    Article  Google Scholar 

  • Levasseur S, Malécot Y, Boulon M, Lavigny E (2010) Statistical inverse analysis based on genetic algorithm and principal component analysis: applications to excavation problems and pressuremeter tests. Int J Numer Anal Meth Geomech 34:471–491

    Article  Google Scholar 

  • Lim KW, Wong KS, Orihara K, Ng PB (2003) Comparison of results of excavation analysis using WALLUP, SAGE CRISP, and EXCAV97. In: Proceedings of Singapore Underground 2003, pp 83–94

    Google Scholar 

  • Miranda T (2007) Geomechanical parameters evaluation in underground structures. Artificial intelligence, Bayesian probabilities and inverse methods, Ph.D.’s thesis 2007. University of Minho, Guimarães, Portugal

    Google Scholar 

  • Moh ZC, Song TF (2013) Performance of diaphragm walls in deep foundation excavations. In: First international conferences on case histories in geotechnical engineering 2013, Missouri University of Science and Technology, pp 1335–1343

    Google Scholar 

  • Moreira N, Miranda T, Pinheiro M, Fernandes P, Dias D, Costa L, Sena-Cruz J (2013) Back analysis of geomechanical parameters in underground works using an Evolution Strategy algorithm. Tunneling Underground Space Technol 33:143–158

    Article  Google Scholar 

  • Ou CY, Tang Y (1994) Soil parameter determination for deep excavation analysis by optimization. J Chinese Inst Eng 17(5):671–688

    Article  Google Scholar 

  • Papon A, Riou Y, Dano C, Hicher PY (2011) Single and multi-objective genetic algorithm optimization for identifying soil parameters. Int J Numer Anal Meth Geomech 36:597–618

    Article  Google Scholar 

  • Rechea C, Levasseur S, Finno R (2008) Inverse analysis techniques for parameter identification in simulation of excavation support systems. Comput Geotech 35(3):331–345

    Article  Google Scholar 

  • Wang ZW, Ng CWW, Liu GB (2005) Characteristics of wall deflections and ground surface settlements in Shanghai. Can Geotech J 42:1243–1254

    Article  Google Scholar 

  • Xu ZH, Wang WD, Wang JH, Shen SL (2005) Performance of deep excavation retaining wall in Shanghai soft deposit. Lowland Technol Int 7:31–43

    Google Scholar 

  • Yan WM, Yuen KV, Yoon GL (2009) Bayesian probabilistic approach for the correlations of compressibility index for marine clays. J Geotech Geoenvironmental Eng 135(12):1932–1940

    Article  Google Scholar 

  • Zentar R, Hicher P, Moulin G (2001) Identification of soil parameters by inverse analysis. Comput Geotech 28:129–144

    Article  Google Scholar 

  • Zhang WG, Goh ATC, Xuan F (2015a) A simple prediction model for wall deflection caused by braced excavation in clays. Comput Geotech 63:67–72

    Article  Google Scholar 

  • Zhang WG, Goh ATC, Zhang YM, Chen YM, Xiao Y (2015b) Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines. Eng Geol 188:29–37

    Article  Google Scholar 

  • Zhao BD, Zhang LL, Jeng DS, Wang JH, Chen JJ (2015) Inverse analysis of deep excavation using differential evolution algorithm. Int J Numer Anal Meth Geomech 39:115–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W. (2020). MARS Use for Inverse Analysis of Soil and Wall Properties in Braced Excavation. In: MARS Applications in Geotechnical Engineering Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-7422-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7422-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7421-0

  • Online ISBN: 978-981-13-7422-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics