Advertisement

A Visualization Based Analysis to Assist Rebalancing Issues Related to Last Mile Problem for Bike Sharing Programs in China: A Big-Data Case Study on Mobike

  • Ercument GorgulEmail author
  • Chaoran Chen
Conference paper

Abstract

This paper is a study about visual analysis of spatiotemporal patterns of popular free floating bike sharing system (FFBSS) Mobike in Shanghai. Mining of over 32 million data points revealed strong cyclical variations on temporal patterns of usage between weeks; however weekday and weekend patterns differ. By using a geohash index based spatial data, we developed another visualization to encode the location of each shared bike ride. Through that, we found that the spatial distribution of Mobike shows a strong linear pattern, confirming that it is mainly used to solve the “last mile problem”. Emergence of vacant rectangles in the visualization informs the specific locations with intense traffic of checking in and out of individual bikes, providing an efficient tool for management of rebalancing.

Keywords

Shared bike Visualization Rebalancing Last mile problem Geohash 

Notes

Conflicts of Interest Statement

Authors declare no potential conflicts of interest in relation with authorship, study and research conducted and/or publication of this article.

References

  1. 1.
    Campbell, A.A., Cherry, C.R., Ryerson, M.S., Yang, X.: Factors influencing the choice of shared bicycles and shared electric bikes in Beijing. Transp. Res. Part C Emerg. Technol. 67, 399–414.  https://doi.org/10.1016/j.trc.2016.03.004 (2016)CrossRefGoogle Scholar
  2. 2.
    Demaio, P.: Bike-sharing : history, impacts, models of provision, and future. J. Public Transp. 12(4), 41–56 (2009).  https://doi.org/10.5038/2375-0901.12.4.3CrossRefGoogle Scholar
  3. 3.
    Meddin, R.: The Bike-sharing World Map–Google My Maps, (n.d). https://www.google.com/maps/. Last accessed 10 Mar 2019
  4. 4.
    Froehlich, J., Neumann, J., Oliver, N.: Sensing and predicting the pulse of the city through shared bicycling. In: Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence, pp. 1420–1426. IJCAI Organization/ AAAI Press, Pasadena. http://www.bicing.com/localizaciones/localizaciones.php (2009)
  5. 5.
    Shaheen, S., Cohen, A., Martin, E.: Public bikesharing in North America. Transp. Res. Rec.: J. Transp. Res. Board 2387, 83–92.  https://doi.org/10.3141/2387-10 (2014)CrossRefGoogle Scholar
  6. 6.
    Shaheen, S., Guzman, S., Zhang, H.: Bikesharing in Europe, the Americas, and Asia. Transp. Res. Rec.: J. Transp. Res. Board 2143, 159–167.  https://doi.org/10.3141/2143-20 (2010)CrossRefGoogle Scholar
  7. 7.
    Shaheen, S., Zhang, H., Martin, E., Guzman, S.: China’s Hangzhou public bicycle. Transp. Res. Rec.: J. Transp. Res. Board 2247, 33–41 (2010).  https://doi.org/10.3141/2247-05CrossRefGoogle Scholar
  8. 8.
    Tang, Y., Pan, H., Shen, Q.: Bike-sharing systems in Beijing, Shanghai and Hangzhou and their impact on travel behaviour. VELO-CITY Global, 206 (2012)Google Scholar
  9. 9.
    Liu, Z., Jia, X., Cheng, W.: Solving the last mile problem: ensure the success of public bicycle system in Beijing. Procedia Soc. Behav. Sci. 43, 73–78.  https://doi.org/10.1016/j.sbspro.2012.04.079 (2012)CrossRefGoogle Scholar
  10. 10.
    Oliveira, G.N., Sotomayor, J.L., Torchelsen, R.P., Silva, C.T., Comba, J.L.D.: Visual analysis of bike-sharing systems. Comput. Graph. (Pergamon) 60, 119–129.  https://doi.org/10.1016/j.cag.2016.08.005 (2016)CrossRefGoogle Scholar
  11. 11.
    Pal, A., Zhang, Y.: Free-floating bike sharing: solving real-life large-scale static rebalancing problems. Transp. Res. Part C Emerg. Technol. 80, 92–116.  https://doi.org/10.1016/j.trc.2017.03.016 (2017)CrossRefGoogle Scholar
  12. 12.
    Midgley, P.: The role of smart bike-sharing systems in Urban mobility. Shar. Urban Transp. Solut. 2, 23–31 (2009)Google Scholar
  13. 13.
    Vogel, P., Mattfeld, D.C.: Strategic and operational planning of bike-sharing systems by data mining–a case study, 127–141.  https://doi.org/10.1007/978-3-642-24264-9_10 (2011)Google Scholar
  14. 14.
    Fishman, E., Washington, S., Haworth, N.: Bike share: a synthesis of the literature. Transp. Rev. 33(2), 148–165 (2013)CrossRefGoogle Scholar
  15. 15.
    Schuijbroek, J., Hampshire, R.C., Van Hoeve, W.J.: Inventory rebalancing and vehicle routing in bike sharing systems. Eur. J. Oper. Res. 257(3), 992–1004 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Raviv, T., Tzur, M., Forma, I.A.: Static repositioning in a bike-sharing system: models and solution approaches. EURO J. Transp. Logist. 2(3), 187–229 (2013)CrossRefGoogle Scholar
  17. 17.
    Nair, R., Miller-Hooks, E., Hampshire, R.C., Bušić, A.: Large-scale vehicle sharing systems: analysis of vélib’. Int. J. Sustain. Transp. 7(1), 85–106.  https://doi.org/10.1080/15568318.2012.660115 (2012)CrossRefGoogle Scholar
  18. 18.
    Lin, J., Yang, T.: Strategic design of public bicycle sharing systems with service level constraints. Transp. Res. Part E 47(2), 284–294 (2011)CrossRefGoogle Scholar
  19. 19.
    O’Mahony, E., Shmoys, D.B.: Data analysis and optimization for (Citi) bike sharing. In: 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015, vol. 1, pp. 687–694. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959476675&partnerID=40&md5=1e7d63398828515b87c16b1559f14a2f (2015)
  20. 20.
    Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., Krause, A.: Incentivizing users for balancing bike sharing systems. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)Google Scholar
  21. 21.
    Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing systems: a variable neighborhood search approach. In: European Conference on Evolutionary Computation in Combinatorial Optimization, pp. 121–132. Springer, Berlin, Heidelberg. (2013, April)CrossRefGoogle Scholar
  22. 22.
    Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. (TIST) 5(3), 38 (2014)Google Scholar
  23. 23.
    Borgnat, P., Abry, P., Flandrin, P., Robardet, C., Rouquier, J. And Fleury, E.: Shared Bicycles In A City: A Signal Processing And Data Analysis Perspective. Advances in Complex Systems, 14(03), pp. 415–438. (2011)CrossRefGoogle Scholar
  24. 24.
    Oppermann, M., Möller, T., Sedlmair, M.: Bike sharing Atlas: visual analysis of bike-sharing networks. Int. J. Transp.  https://doi.org/10.14257/ijt.2018.6.1.01 (2018)CrossRefGoogle Scholar
  25. 25.
    Niemeyer, G.: Geohash–Wikipedia (n.d.). https://en.wikipedia.org/wiki/Geohash. Last accessed 10 Mar 2019
  26. 26.
    Liang, W., Hao, J., Zhang, L.: Travel behavior analysis for free-floating bike sharing systems. In: Positive Systems: Theory and Applications (POSTA 2018), p. 127 (2019)CrossRefGoogle Scholar
  27. 27.
    Xu, C., Ji, J., Liu, P.: The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets. Transp. Res. Part C Emerg. Technol. 95, 47–60 (2018)CrossRefGoogle Scholar
  28. 28.
    Dong, Y., Yang, Z., Yue, Y., Pei, X., Zhang, Z.: Revealing travel patterns of sharing-bikes in a spatial-temporal manner using non-negative matrix factorization method. In: CICTP 2018, pp. 1665–1674. American Society of Civil Engineers, Reston, VA.  https://doi.org/10.1061/9780784481523.165 (2018)
  29. 29.
    Wang, L., Zheng, Y., Xue, Y.: Travel time estimation of a path using sparse trajectories. In: Proceedings of the 20th SIGKDD Conference on Knowledge Discovery and Data Mining. ACM (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.College of Architecture and Urban PlanningTongji UniversityShanghaiChina
  2. 2.College of Design and InnovationTongji UniversityShanghaiChina

Personalised recommendations