On-Site Automatic Construction of Partition Walls with Mobile Robot and Computer Vision

  • Hao MengEmail author
  • Zhihao Liang
  • Pengcheng Qi
Conference paper


This paper demonstrates the implementation of an on-site mobile robot platform, equipped with computer vision system, which can automate the process of fabricating and construct standard partition wall with minimum human intervention. On the basis of this research, the following aspects are presented: (1) the physical setup and the customized multifunctional end effector that enables the robot to fabricate customized partition wall on site (2) the digital workflow that analyzes the geometrical information of the building components and generates robot operational code, while at the same time sets up communication between tracked mobile platform, robotic arm and end effector. (3) its capability to assemble wall panels in space accurately and align the structures dynamically through real time computer vision technology. The experiment provides an outlook to the possibilities of high accuracy construction of large scale building components with location aware mobile robot.


On site construction Computer vision Robotic simulation Adaptive fabrication 


  1. 1.
    News Release: The Employment Situation—December 2018. Department of labour, US (2018)Google Scholar
  2. 2.
    Helm, V.: In-Situ fabrication: mobile robotic units on construction sites. Arch. Des. 84(3), 100–107 (2014)Google Scholar
  3. 3.
    Giftthaler, M., Sandy, T., Dörfler, K., Brooks, I., Buckingham, M., Rey, G., Kohler, M., Gramazio, F., Buchli, J.: Mobile robotic fabrication at 1:1 scale: the In situ Fabricator. Constr. Robot. 1(1–4), 3–14 (2017)CrossRefGoogle Scholar
  4. 4.
    Buchli, J., Giftthaler, M., Kumar, N., Lussi, M., Sandy, T., Dörfler, K., Hack, N.: Digital in situ fabrication–challenges and opportunities for robotic in situ fabrication in architecture, construction, and beyond. Cem. Concr. Res. 112, 66–75 (2018)CrossRefGoogle Scholar
  5. 5. Odico. (2019). Accessed 24 Jan 2019
  6. 6.
    FBR: FBR (Fastbrick Robotics), Industrial Automation Technology. (2019). Accessed 24 Jan 2019
  7. 7.
    Bard, J., Bidgoli, A., Chi, W.: Image classification for robotic plastering with convolutional neural network. ROBARCH 2018, Robotic Fabrication in Architecture, pp. 3–15. Art and Design. Zurich, Springer Nature Switzerland (2018)Google Scholar
  8. 8.
    Asadi, E., Li, B., Chen, I.: Pictobot: a cooperative painting robot for interior finishing of industrial developments. IEEE Robot. Autom. Mag. 25(2), 82–94 (2018)CrossRefGoogle Scholar
  9. 9.
    Grompone von Gioi, R., Randall, G.: Unsupervised smooth contour detection. Image Process. Line 5, 233–267 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Marr, D., Hildreth, E.: Theory of edge detection. In: Proceedings of the Royal Society of London B: Biological Sciences, vol. 207, pp. 187–217 (1980).
  11. 11.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698. Scholar
  12. 12.
    Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32, 722–732 (2010). Scholar
  13. 13.
    Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947). Scholar
  14. 14.
    Park, F.C., Martin, B.J.: Robot sensor calibration: solving AX = XB on the Euclidean group. IEEE Trans. Robot. Autom. 10(5), 717–721 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Tongji UniversityShanghaiChina

Personalised recommendations