Skip to main content

A Novel Enhancement and Segmentation of Color Retinal Image Based on Fuzzy Measure and Fuzzy Integral

  • Conference paper
  • First Online:
Computational Intelligence in Pattern Recognition

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 999))

  • 2012 Accesses

Abstract

Image enhancement and segmentation are predominating methods in image processing and are widely used in ophthalmology for the diagnosis of various eye diseases such as diabetic retinopathy, glaucoma. Especially, retinal image segmentation is vastly required to extract certain features that can facilitate in diagnosis and treatment of eye. Due to the acquisition process, color retinal images can suffer from poor contrast, thus enhancement is essential in ophthalmology. In this work, a novel fuzzy color image enhancement and segmentation technique has been suggested to overcome the problem of low and variation of contrast, and segment in retinal images. This paper provides a special fuzzy computation on retinal image such as fuzzy measure which is used for enhancement and fuzzy integral is applied for segmentation. The proposed algorithm can accomplish excellent contrast and a segment of an image object that endows feasibility in diagnosis from retinal image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldbaum, M., Katz, N., Chaudhuri, S., Nelson, M., Kube, P.: Digital image processing for ocular fundus images. Ophthalmol. Clin. N. Am. 3(3), 447–466 (1990)

    Google Scholar 

  2. Zimmerman, J.B., Pizer, S.M.: An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans. Med. Imaging 7(4), 304–312 (1988)

    Article  Google Scholar 

  3. Burger, W., Burge, M.J.: Principles of Digital Image Processing Core Algorithms. Springer, London (2009)

    Book  Google Scholar 

  4. Lin, T.S., Du, M.H., Xu, J.T.: The preprocessing of subtraction and the enhancement for biomedical image of retinal blood vessels. J. Biomed. Engg. 1(20), 56–59 (2003)

    Google Scholar 

  5. Duan, J., Qiu., G.: Novel histogram processing for colour image enhancement. In: Proceedings of International Conference on Image and Graphics, pp. 55–58 (2004)

    Google Scholar 

  6. Foracchia, M., Grisan, E., Ruggeri, A.: Luminosity and contrast normalization in retinal images. Med. Image Anal. 3(9), 179–190 (2005)

    Article  Google Scholar 

  7. Sun, C.C., Ruan, S.J., Shie, M.C., Pai, T.W.: Dynamic contrast enhancement based on histogram specification. IEEE Trans. Consum. Electron. 51(4), 1300–1305 (2005)

    Article  Google Scholar 

  8. Feng, P., Pan, Y., Wei, B., Jin, W., Mi. D.: Enhancing retinal image by the contourlet transform. Pattern Recognit. Lett. 4(28), 516–522 (2007)

    Article  Google Scholar 

  9. Dai, P., Sheng, H., Zhang, J., Li, L., Wu, J., Fan, M.: Retinal fundus image enhancement using the normalized convolution and noise removing. Int. J. Biomed. Imaging 2016 (2016)

    Google Scholar 

  10. Starck, J.L., Murtagh, F., Candes, E.J., Donoho, D.L.: Gray and color image contrast enhancement by the curvelet transform. IEEE Trans. Image Process. 12(6) (2003)

    Article  MathSciNet  Google Scholar 

  11. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  Google Scholar 

  12. Xu, W., Xia, S., et al.: A model based algorithm for mass segmentation in mammograms. In: IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 2543–2546 (2006)

    Google Scholar 

  13. Ghosh, S.K., Ghosh, A., Chakrabarti, A.: VEA: Vessels extraction algorithm and a novel Wavelet analyzer for diabetic retinopathy detection. Int. J. Image Graph. 18(2) (2018)

    Google Scholar 

  14. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  15. Brox, T., Weickert, J.: Level set based image segmentation with multiple regions. Pattern Recognit. Springer LNCS- 3175, 415–423 (2004)

    Google Scholar 

  16. Chen, W., Giger, M.L., Bick, U.: A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. Acad. Radiol. 13(1), 63–72 (2006)

    Article  Google Scholar 

  17. Li, H.D., Kallergi, M., Clarke, L.P., Jain, V.K., Clark, R.A.: Markov random field for tumor detection in digital mammography. IEEE Trans. Med. Imag. 14, 565–576 (1995)

    Article  Google Scholar 

  18. Carballido-Gamio, J., Belongie, S.J., Majumdar, S.: Normalized cuts in 3-D for spinal MRI segmentation. IEEE Trans. Med. Imaging 23(1), 36–44 (2004)

    Article  Google Scholar 

  19. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  20. Havens, T.C., Anderson, D.T., Wagner, C.: Data-informed fuzzy measures for fuzzy integration of intervals and fuzzy numbers. IEEE Trans. Fuzzy Syst. 23(5) (2015)

    Article  Google Scholar 

  21. Haubecker, H., Tizhoosh, H.R.: Fuzzy Image Processing, Computer Vision and Applications, vol. 2. Academic, New York (1999)

    Google Scholar 

  22. Klir, G.J., Yuan, B.: Fuzzy Set and Fuzzy Logic: Theory and Applications. Prentice Hall, USA (1995). ISBN 043-W1171-5

    Google Scholar 

  23. The database Available: http://www.isi.uu.nl/Research/Databases/DRIVE/

  24. Joshi, G.D., Sivaswamy, J.: Colour retinal image enhancement based on domain knowledge. In: Sixth Indian Conference on Computer Vision, Graphics and Image Processing (2008)

    Google Scholar 

  25. Paulus, J., Meier, J., Bock, R., Hornegger, J., Michelson, G.: Automated quality assessment of retinal fundus photos. Int. J. Comput. Assist. Radiol. Surg. 5(6), 557–564 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Kr Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosh, S.K., Biswas, B., Ghosh, A. (2020). A Novel Enhancement and Segmentation of Color Retinal Image Based on Fuzzy Measure and Fuzzy Integral. In: Das, A., Nayak, J., Naik, B., Pati, S., Pelusi, D. (eds) Computational Intelligence in Pattern Recognition. Advances in Intelligent Systems and Computing, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-13-9042-5_2

Download citation

Publish with us

Policies and ethics