Skip to main content

Identification of Some Transposable Elements of DNA Using “BP Suche” Algorithm

  • Conference paper
  • First Online:
Computational Intelligence in Pattern Recognition

Abstract

Deoxyribo Nucleic Acid (DNA) is the blueprint of all living organisms. In order to draw a clear picture of genome, the researchers concentrated on DNA sequence analysis. Coding region of DNA sequence, responsible for protein synthesis, has been studied extensively in the past decade but exploration of “Non-Coding” DNA (NCDNA) part, which is formerly known as junk DNA” is gaining interest in recent years. The mystery of human evolution is hidden inside Transposon or Transposable Element (TE), a part of NCDNA. Recently, scientists aim to shed light on Transposable Element to uncover the evolutionary history. But the identification of Transposable Elements using computational method is yet to be explored. The authors in this paper address such problem of identifying some of the transposable elements by DNA sequence analysis. BP Suche” algorithm is used here for the analysis of Transposon database of closely related species publicly available in the NCBI website.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson, J.D., Crick, F.H.C.: A structure for DNA. Nature (1953)

    Google Scholar 

  2. Shu, J.-J.: A new integrated symmetrical table for genetic codes. BioSystems 151, 21–26 (2017)

    Article  Google Scholar 

  3. Dutta, M., Barman, S.: Codon characterization based on electrical response. In: International Conference on Microelectronic Circuit and System (Micro-2015)

    Google Scholar 

  4. Das, H., Naik, B., Behera, H.S.: Classification of diabetes mellitus disease (DMD): a data mining (DM) approach. Progress in Computing, Analytics and Networking, pp. 539–549. Springer, Singapore (2018)

    Google Scholar 

  5. Lin, T.-Y., Shah, A.H.: Stochastic finite automata for the translation of DNA to protein. IEEE International Conference on Big Data (2014)

    Google Scholar 

  6. Sengupta, A., Das, J.K., Pal Choudhury, P.: Investigating evolutionary relationships between species through the light of graph theory based on the multiplet structure of the genetic code. In: 2017 IEEE 7th International Advance Computing Conference (2017)

    Google Scholar 

  7. Rokas, A.: Phylogenetic analysis of protein sequence data using the randomized axelerated maximum likelihood (RAXML) program. Current Protocols in Molecular Biology, pp. 19.11.1–19.11.14 (2011)

    Article  Google Scholar 

  8. Pinheiro, H.P., Pinheiro, A.D.S., Abe, A.S., Reis, S.F.D.: Phylogenetic relationships and DNA sequence evolution among species of Pitvipers

    Google Scholar 

  9. Nater, A., Burri, R., Kawakami, T., Smeds, L., Ellegren, H.: Resolving evolutionary relationships in closely related species with whole-genome sequencing data. Syst. Biol. 64(6), 1000–1017 (2015)

    Article  Google Scholar 

  10. Patrushev, L.I., Kovalenko, T.F.: Functions of noncoding sequences in mammalian genomes. Biochemistry (Moscow) 79(13), 1442–1469 (2014)

    Article  Google Scholar 

  11. Shanmugam, A., Nagarajan, A., Pramanayagam, S.: Non-coding DNA–a brief review. J. Appl. Biol. Biotechnol. 5(05), 42–47 (2017)

    Google Scholar 

  12. Bowen, N.J., King Jordan, I.: Transposable elements and the evolution of Eukaryotic complexity. Curr. Issues Mol. Biol. 4, 65–76 (2002)

    Google Scholar 

  13. Britten, R.J.: Transposable element insertions have strongly affected human evolution. PNAS 107(46), 19945–19948 (2010)

    Article  Google Scholar 

  14. Ayarpadikannan, S.: The impact of transposable elements in genome evolution and genetic instability and their implications in various diseases (2014)

    Article  Google Scholar 

  15. Haren, L., Ton-Hoang, B., Chandler, M.: Integrating DNA transposons and retroviral integrases. Annu. Rev. Microbiol. 53, 245–281 (1999)

    Article  Google Scholar 

  16. Arensburger, P., Piegu, B., ves Bigot, Y.: The future of transposable element annotation and their classification in the light of functional genomics. Mob. Genet. Elem. 6(6) (2016)

    Google Scholar 

  17. Kojima, K.: Human transposable elements in Repbase: genomic footprints from fish to humans. Mob. DNA 9, 2 (2018)

    Google Scholar 

  18. Ewing, A.D.: Transposable element detection from whole genome sequence data. Mob. DNA 6, 24 (2015)

    Article  Google Scholar 

  19. Mills, R.E., Andrew Bennett, E., Iskow, R.C., Luttig, C.T., Tsui, C., Stephen Pittard, W., Devine, S.E.: Recently mobilized transposons in the human and chimpanzee genomes. Am. J. Hum. Genet. 78, 671–679 (2006)

    Article  Google Scholar 

  20. Cordaux, R., Batzer, M.A.: The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10(10), 691–703 (2009). https://doi.org/10.1038/nrg2640

    Article  Google Scholar 

  21. Wicker, T., et al.: A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973 (2007)

    Article  Google Scholar 

  22. Khazina, E., Weichenrieder, O.: Human LINE-1 retrotransposition requires a metastable coiled coil and a positively charged N-terminus in L1ORF1p. eLife 7, e34960 (2018). https://doi.org/10.7554/eLife.34960

  23. https://www.ncbi.nlm.nih.gov

  24. Sciamanna, I., Gualtieri, A., Piazza, P.F., Spadafora, C.: Regulatory roles of line-1-encoded reverse transcriptase in cancer onset and progression. Oncotarget 5(18), 8039–8051 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghamitra Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghoshhajra, R., Chatterjee, S., Barman (Mandal), S. (2020). Identification of Some Transposable Elements of DNA Using “BP Suche” Algorithm. In: Das, A., Nayak, J., Naik, B., Pati, S., Pelusi, D. (eds) Computational Intelligence in Pattern Recognition. Advances in Intelligent Systems and Computing, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-13-9042-5_6

Download citation

Publish with us

Policies and ethics