Skip to main content

Delegated Preparation of Quantum Error Correction Code for Blind Quantum Computation

  • Conference paper
  • First Online:
Book cover Advances in Intelligent Information Hiding and Multimedia Signal Processing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 157))

  • 617 Accesses

Abstract

The universal blind quantum computation protocol allows a client to delegate quantum computation to a remote server, and keep information private. Since the qubit errors are inevitable in any physical implementation, quantum error correction codes are needed for fault-tolerant blind quantum computation. In this paper, a quantum error correction code preparation protocol is proposed based on remote blind qubit state preparation (RBSP). The code is encoded on the brickwork state for fault-tolerant blind quantum computation. The protocol only requires client emitting weak coherent pulses, which frees client from dependence on quantum memory and quantum computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. (2008)

    Google Scholar 

  2. Barz, S., Fitzsimons, J.F., Kashefi, E., Walther, P.: Experimental verification of quantum computations. arXiv preprint arXiv:1309.0005 (2013)

  3. Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science 335(6066), 303–308 (2012)

    Article  MathSciNet  Google Scholar 

  4. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 50th Annual IEEE Symposium on Foundations of Computer Science, 2009. FOCS’09, pp. 517–526. IEEE

    Google Scholar 

  5. Chien, C.H., Van Meter, R., Kuo, S.Y.: Fault-tolerant operations for universal blind quantum computation. ACM J. Emerg. Technol. Comput. Sys. 12, 9 (2015)

    Google Scholar 

  6. Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with weak coherent pulses. Phys. Rev. Lett. 108(20) (2012)

    Google Scholar 

  7. Gottesman, D.: Stabilizer codes and quantum error correction. arXiv preprint quant-ph/9705052 (1997)

    Google Scholar 

  8. Liu, M.M., Hu, Y.P.: Equational security of a lattice-based oblivious transfer protocol. J. Netw. Intell. 2(3), 231–249 (2017)

    Google Scholar 

  9. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

    Google Scholar 

  10. Preskill, J.: Fault-tolerant quantum computation. In: Introduction to Quantum Computation and Information, pp. 213–269. World Scientific (1998)

    Google Scholar 

  11. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22) (2001)

    Article  Google Scholar 

  12. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2) (2003)

    Google Scholar 

  13. Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of 37th Annual Symposium on Foundations of Computer Science, 1996, pp. 56–65. IEEE

    Google Scholar 

  14. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493 (1995)

    Article  Google Scholar 

  15. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  16. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  MathSciNet  Google Scholar 

  17. Sun, Y., Zheng, W.: An identity-based ring signcryption scheme in ideal lattice. J. Netw. Intell. 3(3), 152–161 (2018)

    MathSciNet  Google Scholar 

  18. Zhao, Q., Li, Q.: Blind Quantum Computation with Two Decoy States. Springer International Publishing (2017)

    Google Scholar 

  19. Zhao, Q., Li, Q.: Finite-data-size study on practical universal blind quantum computation. Quantum Inf. Process. 17(7), 171 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Space Science and Technology Advance Research Joint Funds (Grant Number: 6141B06110105) and the National Natural Science Foundation of China (Grant Number: 61771168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Q., Li, Q. (2020). Delegated Preparation of Quantum Error Correction Code for Blind Quantum Computation. In: Pan, JS., Li, J., Tsai, PW., Jain, L. (eds) Advances in Intelligent Information Hiding and Multimedia Signal Processing. Smart Innovation, Systems and Technologies, vol 157. Springer, Singapore. https://doi.org/10.1007/978-981-13-9710-3_15

Download citation

Publish with us

Policies and ethics