Advertisement

Improved Parity-Based Error Estimation Scheme in Quantum Key Distribution

  • Haokun Mao
  • Qiong LiEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 157)

Abstract

Quantum Key Distribution (QKD) is a promising technique to distribute unconditional secure keys for the remote two parties. In order to improve the final secure key rate of a QKD system, the Quantum Bit Error Rate (QBER) needs to be estimated as accurate as possible with minimum information leakage. In this paper, an improved parity-based error estimation scheme is proposed. The core part of the scheme is the proposed optimal block length calculation method. Simulation results show that the proposed scheme improves the accuracy of QBER estimation with less information leakage.

Keywords

Quantum key distribution Error estimation Parity 

Notes

Acknowledgements

This work is supported by the Space Science and Technology Advance Research Joint Funds (6141B06110105) and the National Natural Science Foundation of China (Grant Number: 61771168).

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Chen, C.M., Wang, K.H., Wu, T.Y., Wang, E.K.: On the security of a three-party authenticated key agreement protocol based on chaotic maps. Data Sci. Pattern Recognit. 1(2), 1–10 (2017)Google Scholar
  3. 3.
    Pan, J.S., Lee, C.Y., Sghaier, A., Zeghid, M., Xie, J.: Novel systolization of subquadratic space complexity multipliers based on Toeplitz matrix-vector product approach. IEEE Transactions on Very Large Scale Integration (VLSI) Systems (2019)Google Scholar
  4. 4.
    Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(1), 1–127 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Li, Q., Yan, B.Z., Mao, H.K., Xue, X.F., Han, Q., Guo, H.: High-speed and adaptive FPGA-based privacy amplification in quantum key distribution. IEEE Access 7, 21482–21490 (2019)CrossRefGoogle Scholar
  6. 6.
    Li, Q., Le, D., Wu, X., Niu, X., Guo, H.: Efficient bit sifting scheme of post-processing in quantum key distribution. Quantum Inf. Process. 14(10), 3785–3811 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Yan, H., Ren, T., Peng, X., Lin, X., Jiang, W., Liu, T., Guo, H.: Information reconciliation protocol in quantum key distribution system. In: Fourth International Conference on Natural Computation, ICNC’08, vol. 3, pp. 637–641. IEEE (2008)Google Scholar
  8. 8.
    Li, Q., Le, D., Mao, H., Niu, X., Liu, T., Guo, H.: Study on error reconciliation in quantum key distribution. Quantum Inf. Comput. 14(13–14), 1117–1135 (2014)Google Scholar
  9. 9.
    Mao, H., Li, Q., Han, Q., Guo, H.: High throughput and low cost LDPC reconciliation for quantum key distribution. arXiv:1903.10107 (2019)
  10. 10.
    Martinez-Mateo, J., Elkouss, D., Martin, V.: Blind reconciliation. Quantum Inf. Comput. 12(9–10), 791–812 (2012)Google Scholar
  11. 11.
    Kiktenko, E., Truschechkin, A., Lim, C., Kurochkin, Y., Federov, A.: Symmetric blind information reconciliation for quantum key distribution. Phys. Rev. Appl. 8(4), 044017 (2017)CrossRefGoogle Scholar
  12. 12.
    Li, Q., Wen, X., Mao, H., Wen, X.: An improved multidimensional reconciliation algorithm for continuous-variable quantum key distribution. Quantum Inf. Process. 18(1), 25 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kiktenko, E., Malyshev, A., Bozhedarov, A., Pozhar, N., Anufriev, M., Fedorov, A.: Error estimation at the information reconciliation stage of quantum key distribution. J. Russ. Laser Res. 39(6), 558–567 (2018)CrossRefGoogle Scholar
  14. 14.
    Lu, Z., Shi, J.H., Li, F.G.: Error rate estimation in quantum key distribution with finite resources. Commun. Theor. Phys. 67(4), 360 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mo, L., Patcharapong, T., Chun-Mei, Z., Zhen-Qiang, Y., Wei, C., Zheng-Fu, H.: Efficient error estimation in quantum key distribution. Chin. Phys. B 24(1), 010302 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Information Countermeasure Technique InstituteSchool of Computer Science and Technology, Harbin Institute of TechnologyHarbinChina

Personalised recommendations