Skip to main content

Chemical Reaction-Driven Ferroconvection in a Porous Medium

  • Conference paper
  • First Online:
Advances in Fluid Dynamics

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

The effect of chemical reaction on the outset of convection of a ferromagnetic fluid in a horizontal porous layer which is heated from below is studied using small perturbation method. Assuming an exothermic zero-order chemical reaction, the eigenvalues are found by employing the Galerkin method. The effect of magnetic parameters and Frank-Kamenetskii number is discussed. It is established that both magnetic forces and chemical reaction accelerate the threshold of ferroconvection. Further, the fluid layer is destabilized marginally when the nonlinearity of magnetization is strong enough.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashtovoy VG, Berkovsky BM, Vislovich AN (1987) Introduction to thermomechanics of magnetic fluids. Hemisphere, Washington DC

    Google Scholar 

  2. Finlayson BA (1970) Convective instability of ferromagnetic fluids. J Fluid Mech 40:753–767

    Article  Google Scholar 

  3. Gupta MD, Gupta AS (1979) Convective instability of layer of a ferromagnetic fluid rotating about a vertical axis. Int J Eng Sci 17:271–277

    Article  Google Scholar 

  4. Gotoh K, Yamada M (1982) Thermal convection in a horizontal layer of magnetic fluids. J Phys Soc Jpn 51:3042–3048

    Article  Google Scholar 

  5. Stiles PJ, Kagan M (1990) Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. JMMM 85:196–198

    Article  Google Scholar 

  6. Aniss S, Belhaq M, Souhar M (2001) Effects of magnetic modulation on the stability of a magnetic liquid layer heated from above. ASME J Heat Transf 123:428–433

    Article  Google Scholar 

  7. Abraham A (2002) Rayleigh-Bénard convection in a micropolar ferromagnetic fluid. Int J Eng Sci 40:449–460

    Article  Google Scholar 

  8. Maruthamanikandan S (2003) Effect of radiation on Rayleigh-Bénard convection in ferromagnetic fluids. Int J Appl Mech Eng 8:449–459

    MATH  Google Scholar 

  9. Saravanan S (2009) Centrifugal acceleration induced convection in a magnetic fluid saturated anisotropic rotating porous medium. Transp Porous Med 77:79–86

    Article  Google Scholar 

  10. Singh J, Bajaj R (2009) Temperature modulation in ferrofluid convection. Phys Fluids 21:064105

    Article  Google Scholar 

  11. Bhuvaneswari M, Sivasankaran S, Kim YJ (2011) Magneto-convection in an enclosure with sinusoidal temperature distributions on both side walls. Numer Heat Transf A 59:167–184

    Article  Google Scholar 

  12. Thomas NM, Maruthamanikandan S (2013) Effect of gravity modulation on the onset of ferroconvection in a densely packed porous layer. IOSR J Appl Phys 3:30–40

    Article  Google Scholar 

  13. Sivasankaran S, Ananthan SS, Abdul Hakeem AK (2016) Mixed convection in a lid-driven cavity with sinusoidal boundary temperature at the bottom wall in the presence of magnetic field. Scientia Iranica: Trans B Mech Eng 23:1027–1036

    Article  Google Scholar 

  14. Vatani A, Woodfield PL, Nam-Trung N, Dao DV (2018) Onset of thermomagnetic convection around a vertically oriented hot-wire in ferrofluid. JMMM 456:300–306

    Article  Google Scholar 

  15. Thomas NM, Maruthamanikandan S (2018) Gravity modulation effect on ferromagnetic convection in a Darcy-Brinkman layer of porous medium. J Phys: Conf Ser 1139:012022

    Google Scholar 

  16. Mathew S, Maruthamanikandan S (2018) Darcy-Brinkman ferroconvection with temperature dependent viscosity. J Phys: Conf Ser 1139:012023

    Google Scholar 

  17. Maruthamanikandan S, Thomas NM, Mathew S (2018) Thermorheological and magnetorheological effects on Marangoni-ferroconvection with internal heat generation. J Phys: Conf Ser 1139:012024

    Google Scholar 

  18. Kordylewski W, Krajewski Z (1984) Convection effects on thermal ignition in porous media. Chem. Engg. Sci. 39:610–612

    Article  Google Scholar 

  19. Farr WW, Gabitto JF, Luss D, Balakotaiah V (1991) Reaction-driven convection in a porous medium. AIChE J 37:963–985

    Article  Google Scholar 

  20. Malashetty MS, Cheng P, Chao BH (1994) Convective instability in a horizontal porous layer with a chemically reacting fluid. Int J Heat Mass Transf 37:2901–2908

    Article  Google Scholar 

  21. Taj M, Maruthamanikandan S, Khudeja S (2013) Effect of chemical reaction on convective instability in a horizontal porous layer saturated with a couple-stress fluid. Int J Eng Res Appl 3:1742–1748

    Google Scholar 

  22. Akbar SK, Nargund AL, Maruthamanikandan S (2013) Convective instability in a horizontal porous layer saturated with a chemically reacting Maxwell fluid. AIP Conf Proc 1557:130

    Article  Google Scholar 

  23. Akbar SK, Nargund AL, Maruthamanikandan S (2015) Thermal instability of chemically reacting Maxwell fluid in a horizontal porous layer with constant heat flux lower boundary. Int J Eng Res Appl 5:168–177

    Google Scholar 

  24. Zhang Chaoli, Zheng Liancun, Zhang Xinxin, Chen Goong (2015) MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl Math Model 39:65–181

    MathSciNet  MATH  Google Scholar 

  25. Majeed A, Zeeshan A, Ellahi R (2017) Chemical reaction and heat transfer on boundary layer Maxwell Ferro-fluid flow under magnetic dipole with Soret and suction effects. Eng Sci Tech 20:1122–1128

    Google Scholar 

  26. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, Oxford

    MATH  Google Scholar 

  27. Finlayson BA (1972) The method of weighted residuals and variational principles. Academic Press, New York

    MATH  Google Scholar 

  28. Nield DA, Bejan A (2013) Convection in porous media. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Mary Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, N.M., Maruthamanikandan, S. (2021). Chemical Reaction-Driven Ferroconvection in a Porous Medium. In: Rushi Kumar, B., Sivaraj, R., Prakash, J. (eds) Advances in Fluid Dynamics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4308-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4308-1_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4307-4

  • Online ISBN: 978-981-15-4308-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics