Skip to main content

A Clear View on Design of Low-Noise Amplifiers Using CMOS Technology

  • Conference paper
  • First Online:
Next Generation Information Processing System

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1162 ))

Abstract

A detailed explanation on the design of low-noise amplifier is given in this paper. The wideband low-noise amplifiers are implemented in 0.18 µm CMOS technology. The various designs of low-noise amplifiers, such as the LNAs which reduce power dissipation, occupy less area, and consume less power, are presented in view of this paper. A low-noise amplifier design employs different methods, such as using center-tapped inductors, by interconnecting the stages, which are explained in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yazdi, A., Lin, D., Heydari, P.: A 1.8 V three-stage 25 GHz 3 dB-BW differential non-uniform downsized distributed amplifier. IEEE ISSCC Technical Digest, pp. 156–158 (2005)

    Google Scholar 

  2. Liao, C.-F., Liu, S.-I.: A broadband noise-canceling CMOS LNA for3.1–10.6 GHz UWB receivers. IEEE J. Solid State Circ. 42(2), 329–339 (2007)

    Article  Google Scholar 

  3. Meaamar, A., Chye, B.C., Seng, Y.K.: A 3–8 GHz low-noise CMOS amplifier. IEEE Microwave Wirel. Compon. Lett. 19(4) (2009)

    Google Scholar 

  4. Liao. C.F., Liu, S.I.: A broadband noise-canceling CMOS LNA for 3.1–10.6 GHz UWB receiver. In: IEEE Custom Integrated Circuits Conference, National Taiwan University, Taipei, Taiwan (2012)

    Google Scholar 

  5. Ellinger, F., Wickert, M., Eickhoff, R., Mayer U., Hauptmann, S.: Low noise radio frequency integrated circuits in 90 nm SOI CMOS up to 60 GHz. In: Chair for Circuit Design and Network Theory, 01–10 (2010)

    Google Scholar 

  6. Mohan, S.S., Hershenson, M.D., Boyd, S.P., Lee, T.H.: Bandwidth extension in CMOS with optimized on-chip inductors. IEEE j. Solid State circ. 35(3) (2000)

    Google Scholar 

  7. Ismail, A., Abidi, A.A.: A 3–10 GHz low-noise Amplifier with wideband LC-ladder matching network. IEEE j. Solid State Circ. 39(12) (2004)

    Google Scholar 

  8. Wei, C.C., Chiu, H.C., Feng, W.S.: An ultra-wideband CMOS VCO with 3–5 GHz tuning range. In: IEEE International Workshop on Radio-Frequency Integration Technology, pp. 05–10 (2005)

    Google Scholar 

  9. Lee, H., Mohammadi, S.: A subthreshold low phase noise CMOS LC VCO for ultra low power applications. IEEE Microwave Wirel. Compon. Lett. 17(11) (2007)

    Google Scholar 

  10. Uhrmann, H., Zimmermann, H.: Alow-noise current preamplifier in 120 nm CMOS technology. In: Mixdes 2007 Ciechocinek, Poland, pp. 21–23 (2007)

    Google Scholar 

  11. Balemarthy, D.: A 1.8/2.4 GHz dual-band CMOS low noise amplifier using miller capacitance tuning. Indian Institute of Technology, Guwahati, India (2008)

    Google Scholar 

  12. Meaamar, A.: A 3–8 GHz low-noise CMOS Amplifier. IEEE Microwave Wirel. Compon. Lett. 19(4) (2009)

    Google Scholar 

  13. Rashid, S.M.S., Ali, S.N.: A 36.1 GHz single stage low noise amplifier using 0.13 µm CMOS process. In: 2009 World Congress on Computer Science and Information Engineering (2008). ISBN: 978-0-7695-3507-4/08

    Google Scholar 

  14. Ximenes, A.R.: A wideband noise canceling low-noise amplifier for 50 MHz–5 GHz wireless receivers in CMOS technology (2011). ISBN: 978-1-61284

    Google Scholar 

  15. Lim, W.Y., Shi, J., Arasu, M.A., Je ,M.: Geometric scalable 2-port center-tap inductor modeling (2012)

    Google Scholar 

  16. Yang, T.: An Ultra-low-power low-noise CMOS bio-potential amplifier for neural recording (2005). https://doi.org/10.1109/tcsii.2015.2457811

  17. Liao, W.-R.: A 0.5–3.5 GHz wideband CMOS LNA for LTE application (2016). ISBN: 978-1-5090-1978-6/16

    Google Scholar 

  18. Mazhabjafari, B., Yavari, M.: A 2.6–13.7 GHz highly linear CMOS low noise amplifier for UWB applications. In: The 22nd Iranian Conference on Electrical Engineering (ICEE 2014), 20–22 May, Shahid Beheshti University (2014)

    Google Scholar 

  19. Zhang, H., Fan, X., Sánchez-Sinencio, E.: A low-power, linearized, ultra-wideband LNA design technique. IEEE J. Solid State Circ. 44(2), 320–330 (2009)

    Article  Google Scholar 

  20. Mehrjoo, M.S., Yavari, M.: A low power UWB very low noise amplifier using an improved noise reduction technique. In: IEEE IEEE International Symposium of Circuits and Systems, pp. 277–280 (2011)

    Google Scholar 

  21. Khanapurkar, M.M.: Design of ultra wideband low noise amplifier with the negative feedback using micro strip line matching structure for multiple band application and its Simulation based performance analysis (2016)

    Google Scholar 

  22. Singh, V.: Ultra wide band low noise amplifier with self-bias for improved gain and reduced power dissipation (2016). ISBN: 978-1-5090-1666

    Google Scholar 

  23. Salama, M., Soliman, A.M.: Low-voltage low-power CMOS RF low noise amplifier. Int. J. Electron. Commun. (AEÜ) 63(6), 478–482 (2009)

    Article  Google Scholar 

  24. Khosravi, H., Zandian, S., Bijari, A.: A low power, high gain 2.4/5.2 GHz concurrent dual-band low noise amplifier (2019)

    Google Scholar 

  25. Liu, R., Lin, C., Deng, K., Wang, H.: A 0.5–14 GHz 10.6 dB CMOS cascode distributed amplifier. Symp. VLSI Circ. Dig. 17, 139–140 (2003)

    Google Scholar 

  26. Liu, R.-C., Deng, K.-L., Wang, H.: A 0.6–22 GHz broadband CMOS distributed amplifier. In: IEEE Radio Frequency Integrated Circuits Digest of Technical Papers, pp. 103–106 (2003)

    Google Scholar 

  27. Bevilacqua, A., Niknejad, A.: An ultrawideband CMOS low-noise amplifier for 3.1–10.6 GHz wireless receivers. IEEE J. Solid State Circ. 39(12), 2259–2268 (2004)

    Article  Google Scholar 

  28. Bevilacqua, A., Niknejad, A.M.: An ultra-wideband CMOS LNA for 3.1–10.6 GHz wireless receivers. IEEE Int. Solid State Circ. Conf. XVII, 382–383 (2004)

    Google Scholar 

  29. Kim, C.-W., Kang, M.-S., Anh, P.T., Kim, H.-T., Lee, S.-G.: An Ultra-wideband CMOS low noise amplifier for 3–5 GHz UWB system. IEEE J. Solid State Circ. 40, 544–547 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalitha Sowmya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sowmya, L., Khadar Bhasha, S., Nandan, D. (2021). A Clear View on Design of Low-Noise Amplifiers Using CMOS Technology. In: Deshpande, P., Abraham, A., Iyer, B., Ma, K. (eds) Next Generation Information Processing System. Advances in Intelligent Systems and Computing, vol 1162 . Springer, Singapore. https://doi.org/10.1007/978-981-15-4851-2_14

Download citation

Publish with us

Policies and ethics