Skip to main content

Interacting Boundary Layer Methods and Applications

  • Living reference work entry
  • First Online:

Abstract

In this chapter the derivation of the viscous integral boundary layer equations is presented in an unsteady, two-dimensional form. Closure sets for both laminar and turbulent flow conditions together with a laminar to turbulent transition method are given. The solution methods for the inviscid region and the viscous-inviscid interaction coupling scheme are briefly discussed. The numerical solution of the integral boundary layer equations are first presented assuming a prescribed solution for the inviscid flow region and then for the coupled viscous-inviscid interacting boundary layer method.

This is a preview of subscription content, log in via an institution.

References

  • Aksnes NY (2015) Performance characteristics of the NREL S826 airfoil. MSc Thesis – Norwegian University of Science and Technology

    Google Scholar 

  • Atkins HL, Shu CW (1996) Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations. No. 96–1683 in AIAA-paper

    Google Scholar 

  • Basu BC, Hancock GJ (1978) The unsteady motion of a two-dimensional aerofoil in incompressible inviscid flow. J Fluid Mech 87(1):159–178

    Google Scholar 

  • Brune G, Rubbert P, Nark TC Junior (1974) A new approach to inviscid flow/boundary layer matching. In: 7th Fluid and Plasma Dynamics Conference, AIAA, Palo Alto

    Google Scholar 

  • Carter JE (1981) Viscous-inviscid interaction analysis of transonic turbulent separated flow. In: 14th Fluid and Plasma Dynamics Conference, AIAA, Palo Alto

    Google Scholar 

  • Catherall D, Mangler KW (1966) The integration of the two-dimensional laminar boundary-layer equations past the point of vanishing skin friction. J Fluid Mech 26:163–182

    Google Scholar 

  • Cebeci T, Cousteix J (2005) Modeling and computation of boundary-layer flows, 2nd edn. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Cebeci T, Smith AMO (1974) Analysis of turbulent boundary layers, Academic Press

    MATH  Google Scholar 

  • Cebeci T, Platzer MF, Jang HM, Chen HH (1993) Inviscid-viscous interaction approach to the calculation of dynamic stall initiation on airfoils. J Turbomach 115(4):714–723

    Google Scholar 

  • Cockburn B, Shu CW (2001) Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput 3(16):173–261

    MathSciNet  MATH  Google Scholar 

  • Coenen EGM (2001) Viscous-inviscid interaction with the quasi-simultaneous method for 2D and 3D aerodynamic flow. Ph.D. thesis, Rijksuniversiteit Groningen. ISBN: 90-367-1472-9

    Google Scholar 

  • Curle N (1967) A two-parameter method for calculating the two-dimensional incompressible laminar boundary layer. J R Aeronaut Soc 71:117–123

    Google Scholar 

  • De Tavernier D, Baldacchino D, Ferreira CS (2018) An integral boundary layer engineering model for vortex generators implemented in XFOIL. Wind Energy 21(10):906–921

    Google Scholar 

  • Drela M (1985) Two-dimensional transonic aerodynamic design and analysis using the Euler equations. Ph.D. thesis, Massachusetts Institute of Technology

    Google Scholar 

  • Drela M (1989) XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In: Mueller TJ (ed) Low Reynolds Number Aerodynamics. Lecture Notes in Engineering, vol 54. Springer, Berlin, Heidelberg

    Google Scholar 

  • Drela M (1995) Mises implementation of modified Abu-Ghanam/Shaw transition criterion. Report, MIT Aero-Astro

    Google Scholar 

  • Drela M, Giles B (1987) Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J 25(10):1347–1355

    MATH  Google Scholar 

  • Drela M (2013a) Three-dimensional integral boundary layer formulation for general configurations. In: Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2013-2437

    Google Scholar 

  • Drela M (2013b) XFOIL: subsonic airfoil development system. https://web.mit.edu/drela/Public/web/xfoil/

  • Falkner VM, Skan SW (1931) Solutions of the boundary layer equations. Philos Mag J Sci 12(80):865–896

    MATH  Google Scholar 

  • Garcia NR (2011) Unsteady viscous-inviscid interaction technique for wind turbine airfoil. Ph.D. thesis, DTU

    Google Scholar 

  • Goldberg P (1966) Upstream history and apparent stress in turbulent boundary layers. Tech. rep., DTIC Document

    Google Scholar 

  • Goldstein S (1948) On laminar boundary-layer flow near a position of separation. Q J Mech Appl Math 1(1):43–69

    MathSciNet  MATH  Google Scholar 

  • Green J, Weeks D, Brooman J (1977) Prediction of turbulent boundary layer and wakes in compressible flow by a lag-entrainment method. ARC R&M Report 3791, Aeronautical research council

    Google Scholar 

  • Katz J, Plotkin A (2001) Low speed aerodynamics, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Lees L, Reeves BL (1964) Supersonic separated and reattaching laminar flow. AIAA J 2(11):1907–1920

    MathSciNet  MATH  Google Scholar 

  • Lighthill MJ (1958) On displacement thickness. J Fluid Mech 4(04):383–392

    MathSciNet  MATH  Google Scholar 

  • Le Balleur JC (1978) Couplage visqueux-non viscqueux: Méthode numérique er applications aux Écoulements bidimensionnels transoniques et supersoniques. La Recherche Aérospatiale 183:65–76

    MATH  Google Scholar 

  • Marion L, Ramos-García N, Sørensen JN (2014) Inviscid double wake model for stalled airfoils. J Phys Conf Ser 524(1):012132

    Google Scholar 

  • Maskew B, Vaidyanathan TS, Nathman J, Dvorak FA (1984) Prediction of aerodynamic characteristics of fighter wings at high angles of attack. Tech. rep., Office of Naval Research, N00014-82-C-0354, Arlington

    Google Scholar 

  • Matsushita M, Akamatsu T (1985) Numerical computation of unsteady laminar boundary layers with separation using one-parameter integral method. JSME 28(240):1044–1048

    Google Scholar 

  • Matsushita M, Murata S, Akamatsu T (1984) Studies on boundary-layer separation in unsteady flows using an integral method. J Fluid Mech 149:477–501

    MATH  Google Scholar 

  • Milewski W (1997) Three-dimensional viscous flow computations using the integral boundary layer equations simultaneously coupled with a low order panel method. Ph.D. thesis, MIT

    Google Scholar 

  • Moran J (2013) An introduction to theoretical and computational aerodynamics. Dover Publications, New York

    Google Scholar 

  • Morino L, Kuo CC (1981) Subsonic potential aerodynamics for complex configurations: a general theory. AIAA J 12:19

    MATH  Google Scholar 

  • Mugal BH (1998) Integral methods for three-dimensional boundary-layers. Ph.D. thesis, MIT

    Google Scholar 

  • Nishida BA (1997) Fully simultaneous coupling of the full potential equation and the integral boundary layer equations in three dimensions. Ph.D. thesis, MIT

    Google Scholar 

  • Obremski HJ, Fejer AA (1967) Transition in oscillating boundary layers. J Fluid Mech 29(part 1):93–111

    Google Scholar 

  • Obremski HJ, Morkovin MV (1969) Application of a quasi-steady stability model to periodic boundary-layer flows. AIAA J 7(7):1298–1301

    Google Scholar 

  • Özdemir H (2006) High-order discontiuous Galerkin method on hexahedral elements for aeroacoustics. Ph.D. thesis, University of Twente

    Google Scholar 

  • Özdemir H (2010) Development of a discontinuous Galerkin method for the unsteady integral boundary layer equations. Tech. Rep. ECN-X–10-107, Energy Research Centre of the Netherlands, Petten

    Google Scholar 

  • Özdemir H, van Boogaard E (2011) Solving the integral boundary layer equations with a discontinuous Galerkin method. EWEA-2011, Brussels

    Google Scholar 

  • Özdemir H, Hagmeijer R, Hoeijmakers HWM (2005) Verification of the higher order discontinuous Galerkin method on hexahedral elements. Comptes Rendus Mecanique 333:719–725

    MATH  Google Scholar 

  • Özdemir H, Garrel Av, Ravishankara AK, Passalacqua F, Seubers H (2017) Unsteady interacting boundary layer method. Texas, USA, AIAA SciTech Forum 35th Wind Energy Symposium

    Google Scholar 

  • Passalacqua F (2015) Implementation of unsteady two-dimensional interacting boundary layer method. Master’s thesis, Politecnico di Milano

    Google Scholar 

  • Prandtl L (1904) Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg. In: Krazer A (ed) Teubner, Leipzig, Germany, p. 484

    Google Scholar 

  • Ramanujam G, Özdemir H (2017) Improving airfoil lift prediction. Texas, USA, AIAA SciTech Forum 35th Wind Energy Symposium

    Google Scholar 

  • Ramanujam G, Özdemir H, Hoeijmakers HWM (2016) Improving airfoil drag prediction. J Aircraft. https://doi.org/10.2514/1.C033788

  • Ramos García N (2011) Unsteady Viscous-Inviscid Interaction Technique for Wind Turbine Airfoils. Ph.D. thesis, Technical University of Denmark

    Google Scholar 

  • Ravishankara AK, Özdemir H, Franco A (2019) Towards a vortex generator model for integral boundary layer methods. California, USA, AIAA SciTech Forum 2019 Wind Energy Symposium

    Google Scholar 

  • Riziotis VA, Voutsinas SG (2008) Dynamic stall modelling on airfoils based on strong viscous – inviscid interaction coupling. Int J Numer Methods Fluids 56:185–208

    MathSciNet  MATH  Google Scholar 

  • Rosenhead L (1966) Laminar boundary layers. Dover, New York

    MATH  Google Scholar 

  • Sagmo KF, Bartl J, Sætran L (2016) Numerical simulations of the NREL S826 airfoil. J Phys Conf Ser 753:082036

    Google Scholar 

  • Schlichting H, Gersten K (2000) Boundary layer theory, 8th edn. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  • Seubers JH (2014) Path-consisten schemes for interacting boundary layers. Master’s thesis, Delft University of Technology, Delft

    Google Scholar 

  • Smith PD (1972) An integral prediction method for three-dimensional compressible turbulent boundary layers. Tech. Rep. RAE R&M No. 3739

    Google Scholar 

  • Smith A, Gamberoni N (1956) Transition, pressure gradient and stability theory. Tech. rep., Douglas Aircraft Company, El Segundo Division

    Google Scholar 

  • Snel H, Houwink R, Bosschers J (1993a) Sectional prediction of lift coefficients on rotating wind turbine blades in stall. Tech. Rep. ECN-C–93-052, ECN

    Google Scholar 

  • Snel H, Houwink R, Bosschers J, Piers W, van Bussel GJW, Bruining A (1993b) Sectional prediction of 3-D effects for stalled flow on rotating blades and comparison with measurements. Tech. Rep. ECN-RX–93-028, ECN

    Google Scholar 

  • Stratford BS (1954) Flow in the laminar boundary layer near separation. ARC R&M Report 3002, HMSO, London

    Google Scholar 

  • Swafford T (1983a) Three-dimensional, time-dependent, compressible, turbulent, integral boundary layers equations in general curvilinear coordinates and their numerical solution. PhD thesis, Mississippi State University

    Google Scholar 

  • Swafford TW (1983b) Analytical approximation of two-dimensional separated turbulent boundary layer velocity profiles. AIAA J 26:923–926

    MATH  Google Scholar 

  • Tani I (1954) On the approximate solution of the laminar boundary-layer equations. J Aeronaut Sci 21:487–495

    MathSciNet  MATH  Google Scholar 

  • Tetervin N (1947) Boundary-layer momentum equations for three-dimensional flow. Tech. rep.

    Google Scholar 

  • Thomas J (1984) Integral boundary-layer models for turbulent separated flows. In: AIAA 14th Fluid and Plasma Dynamics Conference, Snwomass

    Google Scholar 

  • Thwaites B (1949) Approximate calculation of the laminar boundary layer. Aeronaut Q (1):245–280

    MathSciNet  Google Scholar 

  • Timmer WA (1998) Ontwerp en windtunneltest van profiel DU 97-W-300. Tech. rep., TU Delft, in Dutch

    Google Scholar 

  • Vaithiyanathasamy R, Özdemir H, Bedon G, van Garrel A (2018) A double wake model for interacting boundary layer methods. Florida, USA, AIAA SciTech Forum 2018 Wind Energy Symposium

    Google Scholar 

  • van Dommelen L, Shen S (1980) The spontaneous generation of the singularity in a separating laminar boundary layer. J Comput Phys 38(2):125–140

    MathSciNet  MATH  Google Scholar 

  • van Garrel A (2016) Multilevel panel method for wind turbine rotor flow simulations. Ph.D., University of Twente

    Google Scholar 

  • van Ingen JL (1965) Theoretical and experimental investigations of incompressible laminar boundary layers with and without suction. Tech. rep.

    Google Scholar 

  • van Ingen JL (2008) A new e n method for transition prediction. historical review of work at TU delft. AIAA J 3830:2008

    Google Scholar 

  • van Rooij RPJOM (1996) Modification of the boundary layer in XFOIL for improved stall prediction. Report IW-96087R, Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  • van den Boogard E (2010) High-order discontinuos Galerkin method for unstready integral boundary layer equation. Master’s thesis, Delft University of Technology

    Google Scholar 

  • Veldman AEP (1981) New, quasi-simultaneous method to calculate interacting boundary layers. AIAA J 19(1):79–85. https://doi.org/10.2514/3.7748

    MathSciNet  MATH  Google Scholar 

  • Veldman AEP (2008) Boundary layers in fluids. Lecture notes in applied mathematics, University of Groningen

    Google Scholar 

  • Veldman AEP (2009) A simple interaction law for viscous–inviscid interaction. J Eng Math 65(4):367–383. https://doi.org/10.1007/s10665-009-9320-0

    MathSciNet  MATH  Google Scholar 

  • Vezza M, Galbraith RAM (1985) An inviscid model of unsteady aerofoil flow with fixed upper surface separation. Int J Numer Methods Fluids 5(6):577–592

    MATH  Google Scholar 

  • von Kármán Th (1946) On laminar and turbulent friction. Tech. Rep. TM-1092, NACA

    Google Scholar 

  • von Kármán Th, Milikkan BC (1934) On the theory of laminar boundary layers involving separation. Tech. Rep. 504, National Advisory Committee Aeronautics, Washington

    Google Scholar 

  • Voutsinas SG, Riziotis VA (1999) A viscous–inviscid interaction model for dynamic stall simulations on airfoils. In: 37th Aerospace Sciences Meeting and Exhibit, pp 154–163

    Google Scholar 

  • White FM (1991) Viscous fluid flow, 2nd edn. McGraw-Hill, USA

    Google Scholar 

  • Whitfield DL (1979) Analytical description of the complete two-dimensional turbulent boundary layer velocity profile. AIAA J 17:1145–1147

    MATH  Google Scholar 

  • Wieghardt K, Tillmann W (1953) On the Turbulent Friction Layer for Rising Pressure. Technical memorandum 1314, National Advisory Committee for Aeronautics, translation of ZWB Untersuchungen und Mtteilungen, Nr. 6617, 20 Nov 1944

    Google Scholar 

  • Williams BR, Smith PD (1990) Coupling procedures for viscous-inviscid interaction for attached and separated flows on swept and tapered wings. In: Cebeci T (ed) Numerical and Physical Aspects of Aerodynamic Flows IV. Springer Berlin/Heidelberg, pp 53–70

    Google Scholar 

  • Ye B (2015) The modeling of laminar-to-turbulent transition for unsteady integral boundary layer equations with high-order discontinous Galerkin method. Master’s thesis, Delft University of Technology

    Google Scholar 

  • Zanon A (2011) A vortex panel method for VAWT in dynamic stall. Ph.D. thesis, Università degli Studi di Udine

    Google Scholar 

  • Zhang Z, Liu F, Schuster D (2004) Calculations of unsteady flow and flutter by an Euler and integral boundary-layer method on cartesian grids. In: Proceedings of the 22nd Applied Aerodynamics Conference, AIAA. https://doi.org/10.2514/6.2004-5203

  • Zhang M, Drela S, Galbraith MC, Allmaras SR, Darmofal DL (2019) A strongly-coupled non-parametric integral boundary layer method for aerodynamic analysis with free transition. California, AIAA SciTech Forum 2019 Wind Energy Symposium

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Özdemir .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Özdemir, H. (2020). Interacting Boundary Layer Methods and Applications. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_11-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics