Skip to main content

Aeroelastic Stability Models

  • Living reference work entry
  • First Online:
Book cover Handbook of Wind Energy Aerodynamics

Abstract

In this chapter aeroelastic stability for wind turbines is discussed. The complete wind turbine mode shapes, the harmonic modal components, and the main instabilities are explained, possible resonances addressed, and methods to analyze and improve the stability of a wind turbine design are discussed. The main instabilities that current size wind turbines could suffer from are stall-induced vibrations (edgewise and flapwise, idling instabilities, and vortex-induced vibrations) and classical flutter. The stability of a design can be evaluated using linearized stability tools or nonlinear time domain tools. It is also possible to evaluate damping of some modes on an actual wind turbine. Current size wind turbine has become more flexible, and due to the large deformations, it is required to use advanced blade models when analyzing the stability of the turbine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson C, Heerkes H, Yemm R (1999) The use of blade-mounted dampers to eliminate edgewise stall vibration. In EWEA 1999, Nice

    Google Scholar 

  • Bielawa RL (1992) Rotary wing structural dynamics and aeroelasticity. AIAA Education Series, Washington, DC

    Google Scholar 

  • Bir G (2008) Multiblade coordinate transformation and its application to wind turbine analysis. In: Proceedings of the 2008 ASME Wind Energy Symposium

    Google Scholar 

  • Bisplinghoff RL, Ashley H, Halfman RL (1996) Aeroelasticity. Dover Publications, Inc., New York

    MATH  Google Scholar 

  • Bottasso CL, Campagnolo F, Croce A, Tibaldi C (2013) Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation. Wind Energy 16:1149–1166

    Article  Google Scholar 

  • Bramwell ARS, Done G, Balmford D (2001) Bramwell’s helicopter dynamics, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Chizfahm A, Yazdi EA, Eghtesad M (2018) Dynamic modeling of vortex induced vibration wind turbines. Renew Energy 121(C):632–643

    Article  Google Scholar 

  • Collar AR (1946) The expanding domain of aeroelasticity. J R Aeronaut Soc L:613–636

    Google Scholar 

  • Connell JR (1981) The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system: qObservations and theory. Technical Report PNL-4083 UC-60, Pacific Northwest Laboratory, Battelle

    Google Scholar 

  • Fung YC (1969) An introduction to the theory of aeroelasticity. Dover Publications, Inc., New York

    Google Scholar 

  • Gao Q, Cai X, Guo X-W, Meng R (2018) Parameter sensitivities analysis for classical flutter speed of a horizontal axis wind turbine blade. J Cent South Univ 25(7):1746–1754

    Article  Google Scholar 

  • Hansen MH (2003) Improved modal dynamics of wind turbines to avoid stall-induced vibrations. Wind Energy 6:179–195

    Article  Google Scholar 

  • Hansen MH (2007) Aeroelastic instability problems for wind turbines. Wind Energy 10:551–577

    Article  Google Scholar 

  • Hansen MH (2016) Modal dynamics of structures with bladed isotropic rotors and its complexity for two-bladed rotors. Wind Energ Sci 1:271–296

    Article  Google Scholar 

  • Hansen MH, Thomsen K, Fuglsang P, Knudsen T (2006a) Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments. Wind Energy 9:179–191

    Article  Google Scholar 

  • Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HA (2006b) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42(4):285–330

    Article  Google Scholar 

  • Hansen M (2011) Aeroelastic properties of backward swept blades. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition

    Google Scholar 

  • Hau E (2006) Wind turbines: fundamentals, technologies, application, economics, 2nd edn. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Heinz J, Sørensen NN, Riziotis V, Chassapoyannis P, Schwarz CM, Iradi SG, Stettner M (2016a) Stand-still operation. Technical Report Deliverable 4.5 AVATAR

    Google Scholar 

  • Heinz JC, Sørensen NN, Zahle F (2016b) Fluid-structure interaction computations for geometrically resolved rotor simulations using CFD. Wind Energy 19(12):2205–2221

    Article  Google Scholar 

  • Heinz JC, Sørensen NN, Zahle F, Skrzypiński W (2016c) Vortex-induced vibrations on a modern wind turbine blade. Wind Energy 19(11):2041–2051

    Article  Google Scholar 

  • Holierhoek JG (2008) Aeroelasticity of large wind turbines. Ph.D. thesis, Delft University of Technology

    Google Scholar 

  • Johnson W (1980) Helicopter theory. Princeton University Press, Princeton

    Google Scholar 

  • Jonkman JM, Matha D (2011) Dynamics of offshore floating wind turbines-analysis of three concepts. Wind Energy 14(4):557–569

    Article  Google Scholar 

  • Kallesøe BS (2011) Effect of steady deflections on the aeroelastic stability of a turbine blade. Wind Energy 14:209–224

    Article  Google Scholar 

  • Kallesøe BS, Kragh KA (2016) Field validation of the stability limit of a multi mw turbine. J Phys Conf Ser 753:1–7

    Article  Google Scholar 

  • Kanev S, van Engelen T (2010) Wind turbine extreme gust control. Wind Energy 13(1):18–35

    Article  Google Scholar 

  • Kristensen L, Frandsen S (1982) Model for power spectra of the blade of a wind turbine measured from the moving frame of reference. J Wind Eng Ind Aerodyn 10:249–262

    Article  Google Scholar 

  • Lindenburg C (2003) Bladmode; program for rotor blade mode analysis. Technical Report ECN-C–02-050, ECN, Petten

    Google Scholar 

  • Lobitz DW (2004) Aeroelastic stability predictions for a MW-sized blade. Wind Energy 7:211–224

    Article  Google Scholar 

  • Lobitz D (2005) Parameter sensitivities affecting the flutter speed of a MW-sized blade. In 43rd AIAA Aerospace Sciences Meeting and Exhibit

    Google Scholar 

  • Lobitz DW, Veers PS (2003) Load mitigation with bending/twist-coupled blades on rotors using modern control strategies. Wind Energy 6:105–117

    Article  Google Scholar 

  • Møller T (1997) Blade cracks signal new stress problem. WindPower Monthly

    Google Scholar 

  • Ozbek M, Rixen DJ (2013) Operational modal analysis of a 2.5 MW wind turbine using optical measurement techniques and strain gauges. Wind Energy 16(3):367–381

    Article  Google Scholar 

  • Peters DA (1994) Fast floquet theory and trim for multibladed rotorcraft. J Am Helicopter Soc 39(4):82–89

    Article  Google Scholar 

  • Petersen JT, Madsen HA, Björck A, Enevoldsen P, Øye S, Ganander H, Winkelaar D (1998a) Prediction of dynamic loads and induced vibrations in stall. Technical Report Technical Report Risø-R-1045(EN), Risø National Laboratory, Roskilde

    Google Scholar 

  • Petersen JT, Thomson K, Madsen HA (1998b) Local blade whirl and global rotor whirl interaction. Technical Report Technical Report Risø-R-1067(EN), Risø National Laboratory, Roskilde

    Google Scholar 

  • Pirrung GR, Madsen H, Kim T (2014) The influence of trailed vorticity on flutter speed estimations. J Phys Conf Ser 524:012048

    Article  Google Scholar 

  • Politis E, Chaviaropoulos P, Riziotis V, Voutsinas S, Romero-Sanz I (2009) Stability analysis of parked wind turbine blades. In: Proceedings of the EWEC, pp 16–19

    Google Scholar 

  • QBlade, http://www.q-blade.org

  • Riva R, Cacciola S, Bottasso CL (2016) Periodic stability analysis of wind turbines operating in turbulent wind conditions. Wind Energy Sci 1(2):177–203

    Article  Google Scholar 

  • Skjoldan P (2009) Modal dynamics of wind turbines with anisotropic rotors. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition

    Google Scholar 

  • Skjoldan PF (2011) Aeroelastic modal dynamics of wind turbines including anisotropic effects. Ph.D. thesis, Risø DTU

    Google Scholar 

  • Skjoldan P, Hansen M (2009) On the similarity of the Coleman and Lyapunov-Floquet transformations for modal analysis of bladed rotor structures. J Sound Vib 327(3):424–439

    Article  Google Scholar 

  • Skrzypiński W, Gaunaa M (2015) Wind turbine blade vibration at standstill conditions – the effect of imposing lag on the aerodynamic response of an elastically mounted airfoil. Wind Energy 18(3):515–527

    Article  Google Scholar 

  • Skrzypiński W, Gaunaa M, Sørensen N, Zahle F, Heinz J (2014) Vortex-induced vibrations of a du96-w-180 airfoil at 90 degree angle of attack. Wind Energy 17(10):1495–1514

    Article  Google Scholar 

  • Spera DA (1994) Wind turbine technology: fundamental concepts of wind turbine engineering. ASME, New York

    Google Scholar 

  • Stäblein AR, Hansen MH, Verelst DR (2017) Modal properties and stability of bend–twist coupled wind turbine blades. Wind Energy Sci 2(1):343–360

    Article  Google Scholar 

  • Stettner M, Reijerkerk MJ, Lünenschloß A, Riziotis V, Croce A, Sartori L, Riva R, Peeringa JM (2016) Stall-induced vibrations of the AVATAR rotor blade. J Phys Conf Ser 753:042019

    Article  Google Scholar 

  • Stiesdal H (1994) Extreme wind loads on stall regulated wind turbines. In: BWEA 16, Stirling, UK. Mechanical Engineering Publications Ltd

    Google Scholar 

  • Stol K, Balas M, Bir G (2002) Floquet modal analysis of a teetered-rotor wind turbine. J Sol Energy Eng 124(4):364–371

    Article  Google Scholar 

  • Thomsen K, Petersen JT, Nim E, Øye S, Petersen B (2000) A method for determination of damping for edgewise blade vibrations. Wind Energy 3(4):233–246

    Article  Google Scholar 

  • Wang Q, Jonkman J, Sprague M, Jonkman B (2016) Beamdyn user’s guide and theory manual. Technical report, NREL

    Google Scholar 

  • Wang K, Riziotis VA, Voutsinas SG (2017) Aeroelastic stability of idling wind turbines. Wind Energy Sci 2(2):415–437

    Article  Google Scholar 

  • Zou F, Riziotis VA, Voutsinas SG, Wang J (2015) Analysis of vortex-induced and stall-induced vibrations at standstill conditions using a free wake aerodynamic code. Wind Energy 18(12):2145–2169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica G. Holierhoek .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Holierhoek, J.G. (2020). Aeroelastic Stability Models. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_23-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics