Skip to main content

Fine–Kinney-Based Occupational Risk Assessment Using Hexagonal Fuzzy MULTIMOORA

  • Chapter
  • First Online:
Fine–Kinney-Based Fuzzy Multi-criteria Occupational Risk Assessment

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 398))

  • 468 Accesses

Abstract

Hexagonal fuzzy numbers (HFNs) can be used as a proficient logic to simplify understanding of ambiguity information. HFNs present the usual information in a comprehensive way and also the ambiguity section can be exemplified in a reasonable way. In this chapter, we proposed an improved Fine–Kinney occupational risk assessment approach using a well-known MCDM method Multi-Objective Optimization by Ratio Analysis (MULTIMOORA) using hexagonal fuzzy numbers. Since the mere MULTIMOORA has failed to handle uncertainty and vague information which usually exist in real world problems, we follow integration of HFNs and MULTIMOORA (HFMULTIMOORA). To show the applicability of the novel approach, a case study of risk assessment of a raw mill in cement plant was provided. Comparative analysis with using two aggregation tools as reciprocal rank method and dominance theory are carried out. Finally, the Python implementation of the proposed approach is implemented to be effective for those concerned in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reprinted from Ref. [25], Copyright 2005, with permission from Çimento Endüstrisi İşverenleri Sendikası (ÇEİS)

References

  1. Rajarajeswari, P., Sudha, A. S., & Karthika, R. (2013). A new operation on hexagonal fuzzy number. International Journal of Fuzzy Logic Systems, 3(3), 15–26.

    Article  Google Scholar 

  2. Dinagar, D. S., & Narayanan, U. H. (2016). On determinant of hexagonal fuzzy number matrices. International Journal of Mathematics And its Applications, 4(4), 357–363.

    Google Scholar 

  3. Rajarajeswari, P., & Sudha, A. S. (2014). Ordering generalized hexagonal fuzzy numbers using rank, mode, divergence and spread. IOSR Journal of Mathematics, 10(3), 15–22.

    Article  Google Scholar 

  4. Chakraborty, A., Maity, S., Jain, S., Mondal, S. P., & Alam, S. (2020). Hexagonal fuzzy number and its distinctive representation, ranking, defuzzification technique and application in production inventory management problem. Granular Computing, 1–15.

    Google Scholar 

  5. Deshmukh, M. C., Ghadle, K. P., & Jadhav, O. S. (2020). Optimal solution of fully fuzzy LPP with symmetric HFNs. In Computing in engineering and technology (pp. 387–395). Singapore: Springer.

    Google Scholar 

  6. Parveen, N., & Kamble, P. N. (2020). Decision-making problem using fuzzy TOPSIS Method with hexagonal fuzzy number. In Computing in engineering and technology (pp. 421–430). Singapore: Springer.

    Google Scholar 

  7. Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35, 445–469.

    MathSciNet  MATH  Google Scholar 

  8. Hafezalkotob, A., Hafezalkotob, A., Liao, H., & Herrera, F. (2019). An overview of MULTIMOORA for multi-criteria decision-making: Theory, developments, applications, and challenges. Information Fusion, 51, 145–177.

    Article  Google Scholar 

  9. Deliktas, D., & Ustun, O. (2017). Student selection and assignment methodology based on fuzzy MULTIMOORA and multichoice goal programming. International Transactions in Operational Research, 24(5), 1173–1195.

    Article  MathSciNet  MATH  Google Scholar 

  10. Mavi, R. K., Goh, M., & Zarbakhshnia, N. (2017). Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. The International Journal of Advanced Manufacturing Technology, 91(5–8), 2401–2418.

    Article  Google Scholar 

  11. Baležentis, A., Baležentis, T., & Brauers, W. K. (2012). Personnel selection based on computing with words and fuzzy MULTIMOORA. Expert Systems with Applications, 39(9), 7961–7967.

    Article  MATH  Google Scholar 

  12. Baležentis, T., & Zeng, S. (2013). Group multi-criteria decision making based upon interval-valued fuzzy numbers: an extension of the MULTIMOORA method. Expert Systems with Applications, 40(2), 543–550.

    Article  Google Scholar 

  13. Stanujkic, D., Zavadskas, E. K., Smarandache, F., Brauers, W. K., & Karabasevic, D. (2017). A neutrosophic extension of the MULTIMOORA method. Informatica, 28(1), 181–192.

    Article  Google Scholar 

  14. Dorfeshan, Y., Mousavi, S. M., Mohagheghi, V., & Vahdani, B. (2018). Selecting project-critical path by a new interval type-2 fuzzy decision methodology based on MULTIMOORA, MOOSRA and TPOP methods. Computers & Industrial Engineering, 120, 160–178.

    Article  Google Scholar 

  15. Liu, H. C., You, J. X., Lu, C., & Shan, M. M. (2014). Application of interval 2-tuple linguistic MULTIMOORA method for health-care waste treatment technology evaluation and selection. Waste Management, 34(11), 2355–2364.

    Article  Google Scholar 

  16. Gou, X., Liao, H., Xu, Z., & Herrera, F. (2017). Double hierarchy hesitant fuzzy linguistic term set and MULTIMOORA method: A case of study to evaluate the implementation status of haze controlling measures. Information Fusion, 38, 22–34.

    Article  Google Scholar 

  17. Liao, H., Qin, R., Gao, C., Wu, X., Hafezalkotob, A., & Herrera, F. (2019). Score-HeDLiSF: A score function of hesitant fuzzy linguistic term set based on hesitant degrees and linguistic scale functions: An application to unbalanced hesitant fuzzy linguistic MULTIMOORA. Information Fusion, 48, 39–54.

    Article  Google Scholar 

  18. Zhang, C., Chen, C., Streimikiene, D., & Balezentis, T. (2019). Intuitionistic fuzzy MULTIMOORA approach for multi-criteria assessment of the energy storage technologies. Applied Soft Computing, 79, 410–423.

    Article  Google Scholar 

  19. Mete, S. (2019). Assessing occupational risks in pipeline construction using FMEA-based AHP-MOORA integrated approach under Pythagorean fuzzy environment. Human and Ecological Risk Assessment: An International Journal, 25(7), 1645–1660.

    Article  Google Scholar 

  20. Liang, D., Darko, A. P., & Zeng, J. (2019). Interval-valued pythagorean fuzzy power average-based MULTIMOORA method for multi-criteria decision-making. Journal of Experimental & Theoretical Artificial Intelligence, 1–30.

    Google Scholar 

  21. Büyüközkan, G., & Göçer, F. (2017, June). An extension of MOORA approach for group decision making based on interval valued intuitionistic fuzzy numbers in digital supply chain. In 2017 Joint 17th world congress of international fuzzy systems association and 9th international conference on soft computing and intelligent systems (IFSA-SCIS) (pp. 1–6). IEEE.

    Google Scholar 

  22. Baležentis, T., & Baležentis, A. (2014). A survey on development and applications of the multi-criteria decision making method MULTIMOORA. Journal of Multi-Criteria Decision Analysis, 21(3–4), 209–222.

    Article  Google Scholar 

  23. Dhurai, K., & Karpagam, A. (2016). A new pivotal operation on triangular fuzzy number for solving fully fuzzy linear programming problems. International Journal of Applied Mathematical Sciences, 9(1), 41–46.

    Google Scholar 

  24. Altuntas, S., Dereli, T. & Yilmaz, M. K. (2015). Evaluation of excavator technologies: Application of data fusion based MULTIMOORA methods. Journal of Civil Engineering and Management, 21(8), 977–997.

    Google Scholar 

  25. Şardan, H. S. (2005). İş sağlığı ve güvenliğinde yeni oluşumlar; risk değerlendirmesi ve OHSAS 18001. Çimento Müstahsilleri İşverenleri Sendikası.

    Google Scholar 

  26. Gul, M., Guven, B., & Guneri, A. F. (2018). A new Fine–Kinney-based risk assessment framework using FAHP-FVIKOR incorporation. Journal of Loss Prevention in the Process Industries, 53, 3–16.

    Article  Google Scholar 

  27. Brauers, W. K. M., & Zavadskas, E. K. (2012). Robustness of MULTIMOORA: A method for multi-objective optimization. Informatica, 23(1), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Gul .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gul, M., Mete, S., Serin, F., Celik, E. (2021). Fine–Kinney-Based Occupational Risk Assessment Using Hexagonal Fuzzy MULTIMOORA. In: Fine–Kinney-Based Fuzzy Multi-criteria Occupational Risk Assessment. Studies in Fuzziness and Soft Computing, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-030-52148-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52148-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52147-9

  • Online ISBN: 978-3-030-52148-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics