Skip to main content

Degradation of Plastic in Environment and Its Implications with Special Reference to Aromatic Polyesters

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management

Abstract

Plastic accumulation in the environment is of global concern due to its increase in consumption, recalcitrant nature, and type of material used for its manufacturing. Aromatic polyester such as polyethylene terephthalate (PET) is one of the synthetic plastic which is frequently used in packaging industry, yarn industry, tape recorders, and videos. Plastic bottles have been expanded widely due to high resistance against any breakage, temperature, and having cheaper price in comparison with other packaging materials like metals and glass. This chapter aim is to present a brief description of the PET, its chemistry, synthesis, and commercial manufacturing. Furthermore, plastic pollution and its environmental impact, its levels in different environment, and its conventional handling methods have been discussed. In addition, this chapter also covers the mechanism and methods of PET waste recycling using different catalyst, microbial degradation methods, and its proposed pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abou-Zeid D-M, Müller R-J, Deckwer W-D (2001) Degradation of natural and synthetic polyesters under anaerobic conditions. J Biotechnol 86:113–126

    Article  CAS  Google Scholar 

  • Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643

    Article  CAS  Google Scholar 

  • Alshehrei F (2017) Biodegradation of synthetic and natural plastic by microorganisms. J Appl Environ Microbiol 5:8–19

    CAS  Google Scholar 

  • Alter H (1993) The origins of municipal solid waste: II. Policy options for plastics waste management. Waste Manag Res 11:319–332

    Article  CAS  Google Scholar 

  • Amari T, Ozaki Y (2001) Real-time monitoring of the initial oligomerization of bis(hydroxyethyl terephthalate) by attenuated total reflection/infrared spectroscopy and chemometrics. Macromolecules 34:7459–7462

    Article  CAS  Google Scholar 

  • Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22

    CAS  Google Scholar 

  • Barnes DK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364:1985–1998

    Article  CAS  Google Scholar 

  • Beyler CL, Hirschler MM (2002) Thermal decomposition of polymers. In: SFPE handbook of fire protection engineering, vol 2. National Fire Protection Association, Quincy, pp 110–131

    Google Scholar 

  • Bonhomme S, Cuer A, Delort A, Lemaire J, Sancelme M, Scott G (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81:441–452

    Article  CAS  Google Scholar 

  • Brems A, Dewil R, Baeyens J, Zhang R (2013) Gasification of plastic waste as waste-to-energy or waste-to-syngas recovery route. Nat Sci 5:695–704

    CAS  Google Scholar 

  • Broach R, Jan D, Lesch D, Kulprathipanja S, Roland E, Kleinschmit P (2000) Zeolites. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Cheshire A, Adler E, Barbière J, Cohen Y, Evans S, Jarayabhand S, Jeftic L, Jung R, Kinsey S, Kusui E (2009) UNEP/IOC guidelines on survey and monitoring of marine litter. UNEP regional seas reports and studies

    Google Scholar 

  • Derraik JG (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852

    Article  CAS  Google Scholar 

  • Doi Y, Kumagai Y, Tanahashi N, Mukai K (1992) Structural effects on the biodegradation of microbial and synthetic poly(hydroxyalkanoates). Spec Publ R Soc Chem 109:139–139

    CAS  Google Scholar 

  • El-Shafei HA, El-Nasser NHA, Kansoh AL, Ali AM (1998) Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polym Degrad Stab 62:361–365

    Article  CAS  Google Scholar 

  • Fakhrai R, Saadatfar B (2015) Feasibility study and quality assurance of the end-product of Alphakat KDV technology for conversion of biomass. KTH Royal Institute of Technology, Stockholm

    Google Scholar 

  • Fendall LS, Sewell MA (2009) Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar Pollut Bull 58:1225–1228

    Article  CAS  Google Scholar 

  • Gartiser S, Wallrabenstein M, Stiene G (1998) Assessment of several test methods for the determination of the anaerobic biodegradability of polymers. J Environ Polym Degrad 6:159–173

    Article  CAS  Google Scholar 

  • George N, Kurian T (2014) Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Ind Eng Chem Res 53:14185–14198

    Article  CAS  Google Scholar 

  • Ghosh SK, Pal S, Ray S (2013) Study of microbes having potentiality for biodegradation of plastics. Environ Sci Pollut Res 20:4339–4355

    Article  CAS  Google Scholar 

  • Gregory MR (2009) Environmental implications of plastic debris in marine settings – entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc B Biol Sci 364:2013–2025

    Article  Google Scholar 

  • Gu J-D (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegrad 52:69–91

    Article  CAS  Google Scholar 

  • Hammer J, Kraak MH, Parsons JR (2012) Plastics in the marine environment: the dark side of a modern gift. In: Reviews of environmental contamination and toxicology. Springer, New York

    Google Scholar 

  • Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C, Gray H, Laursen D (2011) Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62:1683–1692

    Article  CAS  Google Scholar 

  • Hoffmann J, Řezníčèková I, Vaňòková S, Kupec J (1997) Manometric determination of biological degradability of substances poorly soluble in aqueous environments. Int Biodeterior Biodegradation 39:327–332

    Article  CAS  Google Scholar 

  • Ikada E (1999) Electron microscope observation of biodegradation of polymers. J Environ Polym Degrad 7:197–201

    Article  CAS  Google Scholar 

  • Jendrossek D, Schirmer A, Schlegel H (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463

    Article  CAS  Google Scholar 

  • Kale SK, Deshmukh AG, Dudhare MS, Patil VB (2015) Microbial degradation of plastic: a review. J Biochem Technol 6:952–961

    CAS  Google Scholar 

  • Kaplan D, Hartenstein R, Sutter J (1979) Biodegradation of polystyrene, poly(methyl methacrylate), and phenol formaldehyde. Appl Environ Microbiol 38:551–553

    Article  CAS  Google Scholar 

  • Kirbaş Z, Keskin N, Güner A (1999) Biodegradation of polyvinylchloride (PVC) by white rot fungi. Bull Environ Contam Toxicol 63:335–342

    Article  Google Scholar 

  • Kumaravel S, Hema R, Lakshmi R (2010) Production of polyhydroxybutyrate (bioplastic) and its biodegradation by Pseudomonas lemoignei and Aspergillus niger. J Chem 7:S536–S542

    CAS  Google Scholar 

  • Levchik SV, Weil ED (2004) A review on thermal decomposition and combustion of thermoplastic polyesters. Polym Adv Technol 15:691–700

    Article  CAS  Google Scholar 

  • Luengo JM, García B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    Article  CAS  Google Scholar 

  • Macfadyen G, Huntington T, Cappell R (2009) Abandoned, lost or otherwise discarded fishing gear. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    Article  CAS  Google Scholar 

  • Moller R, Jeske U (1995) Recycling von PVC. Forschungszentrum Karlsruhe, Karlstuhe, Grundlagen, Stand der Technik, Handlungsmöglichkeiten

    Google Scholar 

  • Ogata Y, Takada H, Mizukawa K, Hirai H, Iwasa S, Endo S, Mato Y, Saha M, Okuda K, Nakashima A (2009) International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar Pollut Bull 58:1437–1446

    Article  CAS  Google Scholar 

  • Priyanka N, Archana T (2011) Biodegradability of polythene and plastic by the help of microorganism: a way for brighter future. J Environ Anal Toxicol 1:111. https://doi.org/10.4172/2161-0525.1000111

    Article  Google Scholar 

  • Raaman N, Rajitha N, Jayshree A, Jegadeesh R (2012) Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Indus Res 1:313–316

    CAS  Google Scholar 

  • Ragaert K, Delva L, Van Geem K (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58

    Article  CAS  Google Scholar 

  • Rebeiz K, Craft A (1995) Plastic waste management in construction: technological and institutional issues. Resour Conserv Recycl 15:245–257

    Article  Google Scholar 

  • Schecter A, Colacino J, Haffner D, Patel K, Opel M, Päpke O, Birnbaum L (2010) Perfluorinated compounds, polychlorinated biphenyls, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA. Environ Health Perspect 118:796–802

    Article  CAS  Google Scholar 

  • Sharon C, Sharon M (2012) Studies on biodegradation of polyethylene terephthalate: a synthetic polymer. J Microbiol Biotechnol Res 2:248–257

    CAS  Google Scholar 

  • Siddique R, Khatib J, Kaur I (2008) Use of recycled plastic in concrete: a review. Waste Manag 28:1835–1852

    Article  CAS  Google Scholar 

  • Sinha V, Patel MR, Patel JV (2010) PET waste management by chemical recycling: a review. J Polym Environ 18:8–25

    Article  CAS  Google Scholar 

  • Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426

    Article  CAS  Google Scholar 

  • Sowmya H, Ramalingappa M, Thippeswamy B (2014) Biodegradation of polyethylene by Bacillus cereus. Adv Polym Sci Technol 4:28–32

    Google Scholar 

  • Thegarid N, Fogassy G, Schuurman Y, Mirodatos C, Stefanidis S, Iliopoulou EF, Kalogiannis K, Lappas AA (2014) Second-generation biofuels by co-processing catalytic pyrolysis oil in FCC units. Appl Catal B Environ 145:161–166

    Article  CAS  Google Scholar 

  • Trudel D, Scheringer M, von Goetz N, Hungerbühler K (2011) Total consumer exposure to polybrominated diphenyl ethers in North America and Europe. Environ Sci Technol 45:2391–2397

    Article  CAS  Google Scholar 

  • UNEP Regional Seas Programme (2005) Marine litter: an analytical overview. UNEP, Nairobi

    Google Scholar 

  • Vermeulen I, Van Caneghem J, Block C, Baeyens J, Vandecasteele C (2011) Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals’ valorisation. J Hazard Mater 190:8–27

    Article  CAS  Google Scholar 

  • Webb H, Arnott J, Crawford R, Ivanova E (2013) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers 5:1–18

    Article  CAS  Google Scholar 

  • Williams S, Peoples O (1996) Biodegradable plastics from plants. ChemTech 26:38–44

    CAS  Google Scholar 

  • Williams CL, Chang C-C, Do P, Nikbin N, Caratzoulas S, Vlachos DG, Lobo RF, Fan W, Dauenhauer PJ (2012) Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal 2:935–939

    Article  CAS  Google Scholar 

  • Xiang Q, Xanthos M, Mitra S, Patel SH, Guo J (2002) Effects of melt reprocessing on volatile emissions and structural/rheological changes of unstabilized polypropylene. Polym Degrad Stab 77:93–102

    Article  CAS  Google Scholar 

  • Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327

    Article  CAS  Google Scholar 

  • Yu J, Sun L, Ma C, Qiao Y, Yao H (2016) Thermal degradation of PVC: a review. Waste Manag 48:300–314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Gaur .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gaur, N., Chowdhary, R., Brunwal, D., Singh, R., Maitra, S.S. (2020). Degradation of Plastic in Environment and Its Implications with Special Reference to Aromatic Polyesters. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_176-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_176-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics