Skip to main content

Pancreas and Islet Cell Transplantation

  • Living reference work entry
  • First Online:
Pediatric Surgery

Abstract

Type 1 diabetes mellitus (T1DM) affects millions of children worldwide, and its incidence is increasing. It is understood to be an autoimmune condition resulting in destruction of the insulin-producing beta cells within the pancreatic islets of Langerhans. The mainstay treatment is exogenous insulin replacement with the goal of controlling the disease in the acute stages and trying to maintain tight glycemic control to prevent the chronic complications of T1DM from developing in the long-term or reverse them if they have developed already. However, although novel types of insulin and sophisticated methods of insulin delivery are being developed, none of these can yet mimic the sophisticated mechanisms of glucose homeostasis within the normal pancreas, and insulin therapy fails to replace the other islet hormones essential for integrated glycemic control. Transplantation is currently the only form of treatment that offers reversal of T1DM by replacing the destroyed islets. This can be in the form of a major whole pancreas transplant or a minimally invasive pancreatic islet cell transplant. This chapter outlines the rationale, methods, results, and future opportunities for islet transplantation in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdelli S, Ansite J, Roduit R, Borsello T, Matsumoto I, Sawada T, et al. Intracellular stress signaling pathways activated during human islet preparation and following acute cytokine exposure. Diabetes. 2004;53(11):2815–23.

    CAS  PubMed  Google Scholar 

  • Bachmann S, Hess M, Martin-Diener E, Denhaerynck K, Zumsteg U. Nocturnal hypoglycemia and physical activity in children with diabetes: new insights by continuous glucose monitoring and accelerometry. Diabetes Care. 2016;39(7):e95–6.

    CAS  PubMed  Google Scholar 

  • Barnard K, Crabtree V, Adolfsson P, Davies M, Kerr D, Kraus A, et al. Impact of type 1 diabetes technology on family members/significant others of people with diabetes. J Diabetes Sci Technol. 2016;10(4):824–30.

    PubMed  PubMed Central  Google Scholar 

  • Beckles ZL, Edge JA, Mugglestone MA, Murphy MS, Wales JK, Guideline Development G. Diagnosis and management of diabetes in children and young people: summary of updated NICE guidance. BMJ. 2016;352:i139.

    PubMed  Google Scholar 

  • Bindi ML, Biancofiore G, Meacci L, Bellissima G, Nardi S, Pieri M, et al. Early morbidity after pancreas transplantation. Transpl Int. 2005;18(12):1356–60.

    PubMed  Google Scholar 

  • Bishop AE, Polak JM. The anatomy, organization and ultrastructure of the islets of Langerhans. In: Pickup JC, Williams G, editors. Textbook of diabetes. Volume 1: diabetes. Oxford: Blackwell Science; 2003.

    Google Scholar 

  • Brandhorst H, Johnson PR, Mönch J, et al. Comparison of clostripain and neutral protease as supplementary enzymes for human islet isolation. Cell Transplant. 2019;28(2):176–84.

    PubMed  Google Scholar 

  • Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem. 2005;53(9):1087–97.

    CAS  PubMed  Google Scholar 

  • CITR. Eighth annual report of the collaborative islet transplant registry (CITR). 2014:1–223.

    Google Scholar 

  • Cowley MJ, Weinberg A, Zammit N, Walters SN, Hawthorne WJ, Loudovaris T, et al. Human islets express a marked pro-inflammatory molecular signature prior to transplantation. Cell Transplant. 2012;21:2063.

    PubMed  Google Scholar 

  • DCCT. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977–86.

    Google Scholar 

  • Diabetes-UK. State of the Nation. 2014. Available from: https://www.diabetes.org.uk

  • Einollahi B, Jalalzadeh M, Taheri S, Nafar M, Simforoosh N. Outcome of kidney transplantation in type 1 and type 2 diabetic patients and recipients with posttransplant diabetes mellitus. Urol J. 2008;5(4):248–54.

    PubMed  Google Scholar 

  • Fiorina P, Folli F, Zerbini G, Maffi P, Gremizzi C, Di Carlo V, et al. Islet transplantation is associated with improvement of renal function among uremic patients with type I diabetes mellitus and kidney transplants. J Am Soc Nephrol. 2003;14:2150–8.

    PubMed  Google Scholar 

  • Fridell JA, Powelson JA, Kubal CA, Burke GW, Sageshima J, Rogers J, et al. Retrieval of the pancreas allograft for whole-organ transplantation. Clin Transpl. 2014;28(12):1313–30.

    Google Scholar 

  • Hafiz MM, Faradji RN, Froud T, Pileggi A, Baidal DA, Cure P, et al. Immunosuppression and procedure-related complications in 26 patients with type 1 diabetes mellitus receiving allogeneic islet cell transplantation. Transplantation. 2005;80(12):1718–28.

    CAS  PubMed  Google Scholar 

  • Hanson MS, Park EE, Sears ML, Greenwood KK, Danobeitia JS, Hullett DA, et al. A simplified approach to human islet quality assessment. Transplantation. 2010;89(10):1178–88.

    PubMed  PubMed Central  Google Scholar 

  • Hathout E, Lakey J, Shapiro J. Islet transplant: an option for childhood diabetes? Arch Dis Child. 2003;88(7):591–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hering BJ, Kandaswamy R, Harmon JV, Ansite JD, Clemmings SM, Sakai T, et al. Transplantation of cultured islets from two-layer preserved pancreases in type 1 diabetes with anti-CD3 antibody. Am J Transplant. 2004;4(3):390–401.

    CAS  PubMed  Google Scholar 

  • Horton PJ, Hawthorne WJ, Walters SN, Patel AT, O’Connell PJ, Chapman JR, et al. Induction of allogeneic islet tolerance in a large-animal model. Cell Transplant. 2000;9(6):877–87.

    CAS  PubMed  Google Scholar 

  • Hyon SH, Ceballos MC, Barbich M, Groppa R, Grosembacher L, Vieiro MM, et al. Effect of the embolization of completely unpurified islets on portal vein pressure and hepatic biochemistry in clinical practice. Cell Transplant. 2004;13(1):61–5.

    PubMed  Google Scholar 

  • IDF. Diabetes Atlas – 7th Edition. 2016. Available from: http://www.diabetesatlas.org

  • JDRF. ViaCyte announces highly anticipated encapsulation clinical trial site expansion into Canada. 2015. Available from: http://www.jdrf.ca/news-and-media/in-the-news/viacyte-announces-highly-anticipated-encapsulation-clinical-trial-site-expansion-into-canada/

  • Kin T. Islet isolation for clinical transplantation. Adv Exp Med Biol. 2010;654:683–710.

    CAS  PubMed  Google Scholar 

  • Kin T, Senior P, O’Gorman D, Richer B, Salam A, Shapiro AM. Risk factors for islet loss during culture prior to transplantation. Transpl Int. 2008;21(11):1029–35.

    PubMed  Google Scholar 

  • Lake SP, Bassett PD, Larkins A, Revell J, Walczak K, Chamberlain J, Rumford GM, London NJ, Veitch PS, Bell PR. Diabetes. 1989;38(Suppl 1):143–5.

    CAS  PubMed  Google Scholar 

  • Lakey JR, Warnock GL, Rajotte RV, Suarez-Alamazor ME, Ao Z, Shapiro AM, et al. Variables in organ donors that affect the recovery of human islets of Langerhans. Transplantation. 1996;61(7):1047–53.

    CAS  PubMed  Google Scholar 

  • Loganathan G, Dawra RK, Pugazhenthi S, Guo Z, Soltani SM, Wiseman A, et al. Insulin degradation by acinar cell proteases creates a dysfunctional environment for human islets before/after transplantation: benefits of alpha-1 antitrypsin treatment. Transplantation. 2011;92(11):1222–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • London NJM, James RFL, Bell PRF. Islet purification. In: Ricordi C, editor. Pancreatic islet cell transplantation. Austin: Landes Co.; 1992.

    Google Scholar 

  • Luzi L, Perseghin G, Brendel MD, Terruzzi I, Battezzati A, Eckhard M, et al. Metabolic effects of restoring partial beta-cell function after islet allotransplantation in type 1 diabetic patients. Diabetes. 2001;50(2):277–82.

    CAS  PubMed  Google Scholar 

  • Maffi P, Secchi A. Clinical results of islet transplantation. Pharmacol Res. 2015;98:86–91.

    PubMed  Google Scholar 

  • Maffi P, Scavini M, Socci C, Piemonti L, Caldara R, Gremizzi C, et al. Risks and benefits of transplantation in the cure of type 1 diabetes: whole pancreas versus islet transplantation. A single center study. Rev Diabet Stud. 2011;8(1):44–50.

    PubMed  PubMed Central  Google Scholar 

  • Nano R, Kerr-Conte JA, Scholz H, et al. Heterogeneity of human pancreatic islet isolation around Europe: results of a survey study. Transplantation. 2019; https://doi.org/10.1097/TP.0000000000002777.

  • Noguchi H, Naziruddin B, Jackson A, Shimoda M, Ikemoto T, Fujita Y, et al. Low-temperature preservation of isolated islets is superior to conventional islet culture before islet transplantation. Transplantation. 2010;89(1):47–54.

    PubMed  Google Scholar 

  • NPDA. National Paediatric Diabetes Audit 2014–15. 2016. Available from: http://www.rcpch.ac.uk/child-health

  • Perosa M, Crescentini F, Antunes I, Rangel EB, Guimaro M, de Sa JR, et al. Pancreas transplantation alone in children: a case report. Clin Transpl. 2009;23(6):964–7.

    Google Scholar 

  • Poggioli R, Faradji RN, Ponte G, Betancourt A, Messinger S, Baidal DA, et al. Quality of life after islet transplantation. Am J Transplant. 2006;6(2):371–8.

    CAS  PubMed  Google Scholar 

  • Qi M, Kinzer K, Danielson KK, Martellotto J, Barbaro B, Wang Y, et al. Five-year follow-up of patients with type 1 diabetes transplanted with allogeneic islets: the UIC experience. Acta Diabetol. 2014;51(5):833–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rafael E, Ryan EA, Paty BW, Oberholzer J, Imes S, Senior P, et al. Changes in liver enzymes after clinical islet transplantation. Transplantation. 2003;76(9):1280–4.

    CAS  PubMed  Google Scholar 

  • Rickels MR, Fuller C, Dalton-Bakes C, Markmann E, Palanjian M, Cullison K, et al. Restoration of glucose counterregulation by islet transplantation in long-standing type 1 diabetes. Diabetes. 2015;64(5):1713–8.

    CAS  PubMed  Google Scholar 

  • Ricordi C, Lacy PE, Finke EH, Olack BJ, Scharp DW. Automated method for isolation of human pancreatic islets. Diabetes. 1988;37(4):413–20.

    CAS  PubMed  Google Scholar 

  • Ricordi C, Gray DW, Hering BJ, Kaufman DB, Warnock GL, Kneteman NM, et al. Islet isolation assessment in man and large animals. Acta Diabetol Lat. 1990;27(3):185–95.

    CAS  PubMed  Google Scholar 

  • Robertson GS, Chadwick DR, Contractor H, James RF, London NJ. The optimization of large-scale density gradient isolation of human islets. Acta Diabetol. 1993a;30(2):93–8.

    CAS  PubMed  Google Scholar 

  • Robertson GS, Chadwick DR, Contractor H, James RF, Bell PR, London NJ. The use of continuous density gradients for the assessment of islet and exocrine tissue densities and islet purification. Acta Diabetol. 1993b;30(3):175–80.

    CAS  PubMed  Google Scholar 

  • Robles L, Storrs R, Lamb M, Alexander M, Lakey JR. Current status of islet encapsulation. Cell Transplant. 2014;23(11):1321–48.

    PubMed  Google Scholar 

  • Ross PL, Milburn J, Reith DM, Wiltshire E, Wheeler BJ. Clinical review: insulin pump-associated adverse events in adults and children. Acta Diabetol. 2015;52(6):1017–24.

    CAS  PubMed  Google Scholar 

  • Scharp DW, Marchetti P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev. 2014;67-68:35–73.

    CAS  PubMed  Google Scholar 

  • Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.

    CAS  PubMed  Google Scholar 

  • Spiers RM, Cross SE, Brown HL, et al. Development of a simple in vitro assay to assess digestion of the extracellular matrix of the human pancreas by collagenase enzyme blends. Cell Transplant. 2018;27(7):1039–46.

    PubMed  PubMed Central  Google Scholar 

  • Thompson DM, et al. Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation. 2011;91:373.

    PubMed  Google Scholar 

  • Villiger P, Ryan EA, Owen R, O’Kelly K, Oberholzer J, Al Saif F, et al. Prevention of bleeding after islet transplantation: lessons learned from a multivariate analysis of 132 cases at a single institution. Am J Transplant. 2005;5(12):2992–8.

    CAS  PubMed  Google Scholar 

  • Weimar B, Rauber K, Brendel MD, Bretzel RG, Rau WS. Percutaneous transhepatic catheterization of the portal vein: a combined CT- and fluoroscopy-guided technique. Cardiovasc Intervent Radiol. 1999;22(4):342–4.

    CAS  PubMed  Google Scholar 

  • WHO. Diabetes Global Report. 2016. Available from: http://www.who.int/diabetes/en/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. V. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Johnson, P.R.V., Brandhorst, D. (2020). Pancreas and Islet Cell Transplantation. In: Puri, P. (eds) Pediatric Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38482-0_120-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38482-0_120-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38482-0

  • Online ISBN: 978-3-642-38482-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics